• 博弈论
  • 博弈论
21年品牌 40万+商家 超1.5亿件商品

博弈论

①全新正版,现货速发,7天无理由退换货②天津、成都、无锡、广东等多仓就近发货,订单最迟48小时内发出③无法指定快递④可开电子发票,不清楚的请咨询客服。

12.28 2.5折 49.8 全新

库存387件

浙江嘉兴
认证卖家担保交易快速发货售后保障

作者(美)约翰·冯·诺依曼

出版社沈阳

ISBN9787544181846

出版时间2020-07

装帧精装

开本其他

定价49.8元

货号30921009

上书时间2024-10-12

倒爷图书专营店

三年老店
已实名 已认证 进店 收藏店铺

   商品详情   

品相描述:全新
商品描述
作者简介
\"约翰·冯·诺依曼(JohnvonNeumann),美籍匈牙利数学家、计算机科学家、物理学家,20世纪重要的科学全才。
先后执教于柏林大学和汉堡大学,1930年前往美国,后加入美国国籍。历任普林斯顿大学教授、普林斯顿高等研究院教授,入选美国原子能委员会会员,随后当选美国国家科学院院士。
1928年,冯·诺依曼证明了博弈论的基本原理,从而宣告了博弈论的诞生。16年后,他又与摩根斯特恩合著《博弈论和经济行为》,将博弈论的应用扩展到经济学领域。\"

内容摘要
\\\"本书是“博弈论之父”冯·诺依曼的代表作,囊括了迄今为止除演化博弈之外的所有博弈论的理论和方法,代表了博弈论发展的高阶水平。
《博弈论》一书既包含了博弈数学理论的细致说明,又包含了该理论多方面的应用与实践。书中用丰富详实的案例,介绍了零和博弈、三人博弈、混合策略、囚徒困境等经典的博弈理论,每个博弈案例背后,都有一个可以运用的策略帮你解决人生难题。
怎样找到合适的合伙人?怎样合理分配利益达到各方均衡?怎样在变幻莫测的局势中,摸清对手的意图?《博弈论》将带领读者走进博弈的赛局中,开始一场特殊的“博弈”之旅。\\\"

精彩内容
\\\"你真的会打扑克吗?——“叫价”的艺术我们在前面的研究中多次强调指出,让博弈中的两个局中人的策略选择相等,是零和二人博弈中最简单的一种方式。在这种博弈中,局中人的策略选择被称为纯策略。事实上我们不应该用这个名称,用“着”来表示似乎并没有显得太夸张。而且,在上面已经讲到的问题中,它们之间存在的广阔形式和正规化之间似乎没有任何明显的区别。因此,在这些类型的博弈中,我们会将“着”和策略等同起来,而这些原本就属于正规化的形式特征。但是我们现在将对一个广阔形式的博弈进行探究,这类博弈中的局中人有若干个“着”,而且这些“着”能够更直观地向正规化的形式和策略进行过渡。
扑克本身具有很多规则,正是这些技术性的规则才避免了赛局中的局中人进行无限次的加叫,保证叫价的次数是有限的。参与扑克博弈的双方,都会自动避免不现实的叫高价,为了避免对手在叫价的过程中出现超人意料的叫价,所以在每局博弈中,都规定了一个最高叫价的数值。除此之外,还规定不能出现过小的叫价,这种规定保证了博弈顺利进行。
在实际进行扑克博弈时,参与赛局中的任意一个人率先叫价,紧接着剩下的局中人进行轮流叫价。在这种博弈过程中,所包含的有利因素和不利因素自身就是一个非常有趣的问题。而且扑克本身是一个比较复杂的博弈,但是为了方便研究叫价和加叫次数的限制,我们将其进行简化。
扑克自身就具有一种不对称性,正是受到这种因素的影响,所以希望在研究的过程中不受这种情况的干扰,这样便能够研究出扑克在最简单的形式下的主要特征。基于此,我们假设参与博弈赛局的两个局中人,在博弈进行中都会根据自己的选择开叫,而且他们不知道另一个局中人做何决策,当这两个局中人分别选择完自己的叫价后,才让对方知道自己的叫价结果,简单说就是让对手知道自己的叫价究竟是“高”还是“低”。
在此基础上,我们再对此种扑克博弈进行简化:假设我们规定参与赛局的每个人都只有两种决策权,即“不看牌”和“看牌”。这就意味着,在进行此次博弈时,排除了“加叫”这种决策。简言之,“加叫”只是在用一种更加巧妙和激烈的方式来达成局中人的某种意图,只是早在其中的一个局中人进行高叫价的时候,便能展现出他的这种意图。由于我们想要更加直白、明了地看待扑克博弈的问题,所以要尽最大可能避免使用多种意图来表示此次博弈中的一种意图。
参照上面的方式,我们设定下面这些条件:除了赛局中的参与者不让对方知道自己的真实意图外,还要考虑到其中的一个局中人的决策被对方知道的情况。试想,当参与扑克博弈的局中人的叫价同为“高”或者同为“低”时,便需要两个参与者将自己手上的牌同时摊开,比较它们的大小。这时,某个局中人手上如果握有强牌,那么他将获得对方手上的数额;假设双方手上握有的牌大小相同,那么便不需要其中的一方进行支付。
除此之外,当其中的一个局中人选择了“高”的叫价,而另一个人选择了“低”叫价时,那么选择“低”叫价的一方便会有两种选择,即选择“不看牌”或者“看牌”。此时,当“低”叫价的一方选择“不看牌”时,而且在不考虑到手上的牌的强弱的前提下,便意味着他将付给对方自己低叫价的数值;当“低”叫价的一方选择“看牌”时,那就意味着他的选择发生了改变,即由“低”叫价变成了“高”叫价,针对这种情况的处理方式便会和最初都选择“高”叫价时一样。
我们再次对扑克的技术性规则进行讨论:在扑克博弈中,我们为了避免局中人会没有限制地加叫,便规定了局中人叫价次数是有限的,这便是终止规则。为了避免不切实际的叫高价发生,因为这对于对手而言将会产生不可预料的后果,所以在博弈赛局中规定了叫价以及加叫的一个上限数值,同时通常情况下,还会规定禁止过小的加叫。因此,我们将会给予叫价和加叫一个限制性的条件,我们在博弈进行前,就设定两个数目,a和b,而且让a>b>0。
同时,我们还规定博弈中的局中人的每次叫价,即要么叫价“高”,要么叫价“低”。在这种情况下,我们将前者定义为a,后者定义为b。叫价高低之间的比值是此次博弈中唯一有联系,并且会发生变化的因素。
假设在进行扑克博弈的过程中,a与b的比值明显比1大,那么这就说明博弈的风险和冒险性极高;相反地,若是a与b的比值仅仅比1大一点,那么这就意味着此次博弈较为安全。
现在,我们将叫价和加价的次数限制对整个博弈过程进行简化。实际上,在日常生活中进行扑克游戏时,其中的一个局中人率先开始叫价,之后局中人开始轮流叫价。
由于在扑克博弈中,其中的一个局中人拥有第一次叫加权,同时他也要第一个做出行动。这时,不仅有有利因素,还有不利因素,这自身就是一个非常有趣的问题。我们已经对扑克不对称形式进行过讨论,而且这个问题占有一定地位。只是我们在最初研究这个问题时,希望能够避开这个带有困扰性的问题。换言之,我们避免在此博弈中研究所有的不对称情况。由此一来,我们将会得到扑克博弈的最纯粹、最简单的形式下的重要特征。
为此,我们可以在进行扑克博弈前假设,赛局中的每个局中人都拥有自己的开叫,而且每个局中人在博弈中并不知道其他局中人的选择,当博弈的双方都做出自己的叫价后,其中一个局中人的选择才被另一个局中人得知,即让每个局中人清楚另外一个局中人的选择,这时才知道对手的叫价究竟是“高”还是“低”。
除此之外,我们还能对此种博弈进行简化:我们提供给赛局中的局中人两种选择,一种是选择“看牌”,另一种是选择“不看”。这就意味着,我们在进行此次扑克博弈时,并没有“加叫”这个选择。“加叫”在某种程度上只是局中人巧妙、强烈地表达自己的某种意图的方式,尤其是在一个高开叫价的博弈局中,更明显地表达出了这种意图。我们的研究目的是希望问题能够变得简单,所以会尽可能地避开这些用不同方式表达同种意图的情况。
根据上面的这些前提条件,我们对此做出下面的规定:当两个局中人所做出的选择被对方得知时,假设两个人都选择了“高”的叫价,或者同时选择了“低”的叫价,此时两个局中人手上的牌必须摊开,那么手上拥有较强牌的局中人,将从他的对手那里获得a或者b的数额。假设这两个局中人手上所拥有的牌是相等的,那么双方不需要进行支付。
除此之外,还有另外一种情况,当其中的一个局中人选择了叫“高”价,而另外一个局中人选择了叫“低”价。这时,选择了叫“低”价的人拥有两个选择,即选择“不看”或者选择“看牌”。当另外一个局中人选择了“不看”之后,在不考虑两手牌的强弱的情形下,他将支付给对手低价的数额;若他选择了“看牌”,则表示他的选择发生了改变——由叫“低”价转换成了叫“高”价。而对这种情况的处理方式,则与两个局中人都选择叫“高”价时一样。
我们对于上面提到的简化版的扑克博弈规则加以总结:参与博弈赛局的每个局中人,能够通过一个“机会的着”获得他的一“手”牌;然后,每个局中人可以通过一个“人的着”对a、b进行选择,简单说就是选择叫“高”价还是叫“低”价;最后,赛局中的每个局中人都了解了另外一个局中人的选择,但是他并不知道他手上的牌,即双方都知道自己手中的一手牌以及自己的选择。假设其中的一个局中人在博弈中选择了叫“高”价,而另外一个局中人的选择是叫“低”价,那么后者将会拥有两种选择,即“看牌”或者“不看”。
这是一场博弈赛局的过程,当一场赛局结束时,他们的支付方式如何呢?假设两个局中人同时选择了叫“高”价,或者一个局中人选择叫“高”价,而另外一个局中人选择叫“低”价,并且在后来还选择了“看牌”,那么前一个局中人将从后一个局中人那里获得三个数额,即a、0、-a;假设两个局中人都选择了叫“低”价,那么前一个局中人将从后一个局中人那里获得三个数额,即b、0、-b;假设另外一个局中人选择了叫“低”价,并且在后来选择了“不看”,那么,“人的着”属于选择了叫“低”价的人。\\\"

   相关推荐   

—  没有更多了  —

以下为对购买帮助不大的评价

此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP