• 智能Web算法(第2版)
21年品牌 40万+商家 超1.5亿件商品

智能Web算法(第2版)

10.3 1.5折 69 九品

仅1件

天津宝坻
认证卖家担保交易快速发货售后保障

作者达观数据、陈运文 译

出版社电子工业出版社

出版时间2017-07

版次1

装帧平装

货号969488235807899650

上书时间2025-01-20

转转图书专营店

三年老店
已实名 已认证 进店 收藏店铺

   商品详情   

品相描述:九品
图书标准信息
  • 作者 达观数据、陈运文 译
  • 出版社 电子工业出版社
  • 出版时间 2017-07
  • 版次 1
  • ISBN 9787121317231
  • 定价 69.00元
  • 装帧 平装
  • 开本 16开
  • 纸张 胶版纸
  • 页数 248页
  • 字数 99999千字
【内容简介】

机器学习一直是人工智能研究领域的重要方向,而在大数据时代,来自Web 的数据采集、挖掘、应用技术又越来越受到瞩目,并创造着巨大的价值。本书是有关Web数据挖掘和机器学习技术的一本知名的著作,第2 版进一步加入了本领域全新的研究内容和应用案例,介绍了统计学、结构建模、推荐系统、数据分类、点击预测、深度学习、效果评估、数据采集等众多方面的内容。《智能Web算法(第2版)》内容翔实、案例生动,有很高的阅读价值。
《智能Web算法(第2版)》适合对算法感兴趣的工程师与学生阅读,对希望从业务角度更好地理解机器学习技术的产品经理和管理层来说,亦有很好的参考价值。

【作者简介】
Douglas McIlwraith博士,在剑桥大学计算机科学系获得了学士学位,而后在帝国理工大学获得了博士学位。他是一位机器学习专家,目前他在位于伦敦的一家广告网络公司担任数据科学家职位。他在分布式系统、普适计算、通用感知、机器人以及安全监控方面都贡献了研究成果,他为让技术更好地服务人们的生活而无比激动。Haralambos Marmanis博士是将机器学习技术引入工业解决方案的先驱,在专业软件研发方面拥有 25年经验。

Dmitry Babenko,为银行、保险、供应链管理、商业智能企业等设计和开发了丰富的应用和系统架构。他拥有白俄罗斯国立信息和无线电大学计算机硕士学位。 

陈运文,计算机博士,达观数据 CEO,ACM和 IEEE会员,中国计算机学会高级会员;在大数据架构设计、搜索和推荐引擎、文本数据挖掘等领域有丰富的研发经验;曾经担任盛大文学首席数据官、腾讯文学数据中心高级总监、百度核心算法工程师等工作,申请有 30余项国家发明专利,多次参加国际 ACM数据算法竞赛并获得冠亚军荣誉。

【目录】
第1章 为智能Web建立应用1 

1.1 智能算法的实践运用:Google Now 3 

1.2 智能算法的生命周期5 

1.3 智能算法的更多示例6 

1.4 不属于智能应用的内容 7 

1.4.1 智能算法并不是万能的思考机器 7 

1.4.2 智能算法并不能成为完全代替人类的工具8 

1.4.3 智能算法的发展并非一蹴而就 8 

1.5 智能算法的类别体系9 

1.5.1 人工智能 9 

1.5.2 机器学习10 

1.5.3 预测分析 11 

1.6 评估智能算法的效果 13 

1.6.1 评估智能化的程度 13 

1.6.2 评估预测14 

1.7 智能算法的重点归纳 16 

1.7.1 你的数据未必可靠 16 

1.7.2 计算难以瞬间完成 17 

1.7.3 数据规模非常重要 17 

1.7.4 不同的算法具有不同的扩展能力 18 

1.7.5 并不存在万能的方法 18 

1.7.6 数据并不是万能的 18 

1.7.7 模型训练时间差异很大18 

1.7.8 泛化能力是目标19 

1.7.9 人类的直觉未必准确 19 

1.7.10 要考虑融入更多新特征 19 

1.7.11 要学习各种不同的模型 19 

1.7.12 相关关系不等同于因果关系 20 

1.8 本章小结20

第2章 从数据中提取结构:聚类和数据变换21 

2.1 数据、结构、偏见和噪声 23 

2.2 维度诅咒26 

2.3 k-means算法27 

2.3.1 实践运用 k-means31 

2.4 高斯混合模型 34 

2.4.1 什么是高斯分布34 

2.4.2 期望最大与高斯分布 37 

2.4.3 高斯混合模型 37 

2.4.4 高斯混合模型的学习实例 38 

2.5 k-means和GMM的关系41 

2.6 数据坐标轴的变换 42 

2.6.1 特征向量和特征值 43 

2.6.2 主成分分析 43 

2.6.3 主成分分析的示例 45 

2.7 本章小结47 

第3章 推荐系统的相关内容48 

3.1 场景设置:在线电影商店 49 

3.2 距离和相似度 50 

3.2.1 距离和相似度的剖析 54 

3.2.2 最好的相似度公式是什么 56 

3.3 推荐引擎是如何工作的57 

3.4 基于用户的协同过滤 59 

3.5 奇异值分解用于基于模型的推荐 64 

3.5.1 奇异值分解 64 

3.5.2 使用奇异值分解进行推荐:为用户挑选电影66 

3.5.3 使用奇异值分解进行推荐:帮电影找到用户71 

3.6 Net.ix竞赛74 

3.7 评估推荐系统 76 

3.8 本章小结78

第4章 分类:将物品归类到所属的地方79 

4.1 对分类的需求 80 

4.2 分类算法概览 83 

4.2.1 结构性分类算法84 

4.2.2 统计性分类算法86 

4.2.3 分类器的生命周期 87 

4.3 基于逻辑回归的欺诈检测 88 

4.3.1 线性回归简介 89 

4.3.2 从线性回归到逻辑回归91 

4.3.3 欺诈检测的应用94 

4.4 你的结果可信吗 102 

4.5 大型数据集的分类技术 106 

4.6 本章小结 108 

第5章 在线广告点击预测.109 

5.1 历史与背景 110 

5.2 广告交易平台  112 

5.2.1 cookie 匹配 113 

5.2.2 竞价(bid)  113 

5.2.3 竞价成功(或失败)的通知  114 

5.2.4 广告展示位 114 

5.2.5 广告监测  115 

5.3 什么是bidder  115 

5.3.1 bidder的需求 116 

5.4 何为决策引擎  117 

5.4.1 用户信息  117 

5.4.2 广告展示位信息  117 

5.4.3 上下文信息 117 

5.4.4 数据准备  118 

5.4.5 决策引擎模型  118 

5.4.6 将点击率预测值映射为竞价价格 118 

5.4.7 特征工程  119 

5.4.8 模型训练  119 

5.5 使用Vowpal Wabbit进行点击预测 120 

5.5.1 Vowpal Wabbit的数据格式 120 

5.5.2 准备数据集123 

5.5.3 测试模型 128 

5.5.4 模型修正 131 

5.6 构建决策引擎的复杂问题132 

5.7 实时预测系统的前景 133 

5.8 本章小结 134

第6章 深度学习和神经网络.135 

6.1 深度学习的直观方法 136 

6.2 神经网络 137 

6.3 感知机 139 

6.3.1 模型训练 141 

6.3.2 用 scikit-learn训练感知机142 

6.3.3 两个输入值的感知机的几何解释144 

6.4 多层感知机146 

6.4.1 用反向传播训练 150 

6.4.2 激活函数 150 

6.4.3 反向传播背后的直观理解152 

6.4.4 反向传播理论 153 

6.4.5 scikit-learn中的多层神经网络 155 

6.4.6 训练出来的多层感知机 158 

6.5 更深层:从多层神经网络到深度学习 159 

6.5.1 受限玻耳兹曼机 160 

6.5.2 伯努利受限玻耳兹曼机 160 

6.5.3 受限玻耳兹曼机实战 164 

6.6 本章小结 167

第7章 做出正确的选择168 

7.1 A/B测试 170 

7.1.1 相关的理论170 

7.1.2 评估代码 173 

7.1.3 A/B测试的适用性174 

7.2 多臂赌博机175 

7.2.1 多臂赌博机策略 176 

7.3 实践中的贝叶斯赌博机策略 180 

7.4 A/B测试与贝叶斯赌博机的对比 191 

7.5 扩展到多臂赌博机192 

7.5.1 上下文赌博机 193 

7.5.2 对抗赌博机193 

7.6 本章小结 194 

第8章 智能Web的未来196 

8.1 智能Web的未来应用197 

8.1.1 物联网 197 

8.1.2 家庭健康护理 198 

8.1.3 自动驾驶汽车 198 

8.1.4 个性化的线下广告199 

8.1.5 语义网 199 

8.2 智能Web的社会影响200

附录A 抓取网络上的数据.201

点击展开 点击收起

—  没有更多了  —

以下为对购买帮助不大的评价

此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP