• MATLAB优化算法(第2版)
图书条目标准图
21年品牌 40万+商家 超1.5亿件商品

MATLAB优化算法(第2版)

下单以备注书名为准:《MATLAB优化算法(第2版)》,正版全新可开发票

187.7 全新

库存3件

湖北武汉
认证卖家担保交易快速发货售后保障

作者张岩

出版社清华大学出版社

出版时间2023-04

版次2

装帧其他

上书时间2024-10-21

石坪图书专营店

三年老店
已实名 已认证 进店 收藏店铺

   商品详情   

品相描述:全新
图书标准信息
  • 作者 张岩
  • 出版社 清华大学出版社
  • 出版时间 2023-04
  • 版次 2
  • ISBN 9787302603139
  • 定价 118.00元
  • 装帧 其他
  • 开本 16开
  • 纸张 胶版纸
  • 页数 480页
  • 字数 863.000千字
【内容简介】
本书基于MATLAB 2020a软件,根据常用优化算法进行编写,包含多种优化算法的MATLAB实现方法,可以帮助读
  者掌握MATLAB在优化算法中的应用。
  全书分为4部分,包括MATLAB基础知识、常规优化算法、智能优化算法和拓展运用。部分从初识MATLAB开
  始详细介绍MATLAB基础、程序设计、图形绘制等内容;第二部分介绍MATLAB线性规划、非线性规划、无约束一维极
  值、无约束多维极值、约束优化方法、二次规划、多目标函数优化方法等;第三部分介绍遗传优化算法免疫优化算法、
  粒子群优化算法、小波变换、神经网络等;第四部分介绍MATLAB在分形维数和经济金融优化中的应用。
  本书以MATLAB优化实现为主线,结合各种优化算法函数的说明、优化模型案例的讲解,使读者易看懂、会应用。
  本书深入浅出,实例引导,讲解翔实,既可以作为高等院校数学建模和数学实验的参考教材,也可作为广大科研工程
  技术人员的参考用书。
【作者简介】
张岩:毕业于北京航空航天大学,博士。精通MATLAB、Mathematica、Lingo等工程仿真计算软件。熟练掌握利用MATLAB解决数学建模、科学计算、算法优化等工程应用问题。在国内外期刊发表SCI、EI检索学术论文多篇,获得授权专利多项,获得国家及省部级科技奖各一项,出版多部畅销科技图书。
【目录】
部分 MATLAB基础知识

第1章 初识MATLAB

第2章 MATLAB基础

第3章 程序设计

部分  MATLAB基础知识

第1章  初识MATLAB 3

  1.1  工作环境 3

    1.1.1  操作界面简介 3

    1.1.2  命令行窗口 4

    1.1.3 “命令历史记录”窗口 6

    1.1.4 “当前文件夹”窗口和路径管理 8

    1.1.5  搜索路径 8

    1.1.6 “工作区”窗口和数组编辑器 10

    1.1.7  变量的编辑命令 11

    1.1.8  存取数据文件 12

  1.2  帮助系统 13

    1.2.1  纯文本帮助 13

    1.2.2  帮助导航 13

    1.2.3  示例帮助 14

  1.3  本章小结 15

第2章  MATLAB基础 16

  2.1  基本概念 16

    2.1.1  数据类型概述 16

    2.1.2  整数类型 17

    2.1.3  浮点数类型 19

    2.1.4  常量与变量 20

    2.1.5  标量、向量、矩阵与数组 21

    2.1.6  字符型 22

    2.1.7  运算符 23

    2.1.8  复数 25

    2.1.9  无穷量和非数值量 26

  2.2  向量 26

    2.2.1  向量的生成 26

    2.2.2  向量的加、减和乘、除运算 28

    2.2.3  向量的点、叉积运算 29

  2.3  数组 30

    2.3.1  数组的创建和操作 31

    2.3.2  数组的常见运算 34

  2.4  矩阵 37

    2.4.1  矩阵的生成 37

    2.4.2  向量的赋值 40

    2.4.3  矩阵的加、减运算 41

    2.4.4  矩阵的乘法运算 42

    2.4.5  矩阵的除法运算 43

    2.4.6  矩阵的分解运算 43

  2.5  字符串 44

    2.5.1  字符串变量与一维字符数组 44

    2.5.2  对字符串的多项操作 45

    2.5.3  二维字符数组 46

  2.6  符号 47

    2.6.1  符号表达式的生成 47

    2.6.2  符号矩阵 48

    2.6.3  常用符号运算 49

  2.7  关系运算和逻辑运算 50

    2.7.1  关系运算 50

    2.7.2  逻辑运算 51

    2.7.3  常用函数 53

  2.8  复数 54

    2.8.1  复数和复矩阵的生成 54

    2.8.2  复数的运算 55

  2.9  数据类型间的转换 56

  2.10  本章小结 57

第3章  程序设计 58

  3.1  MATLAB编程概述 58

    3.1.1 “编辑器”窗口 58

    3.1.2  编程原则 59

  3.2  M文件和函数 61

    3.2.1  M文件 61

    3.2.2  匿名函数 63

    3.2.3  主函数与子函数 63

    3.2.4  重载函数 65

    3.2.5  eval、feval函数 65

    3.2.6  内联函数 67

    3.2.7  向量化和预分配 69

    3.2.8  函数参数传递 70

  3.3  程序控制 72

    3.3.1  分支控制语句 72

    3.3.2  循环控制语句 74

    3.3.3  其他控制语句 76

  3.4  程序调试和优化 80

    3.4.1  程序调试命令 80

    3.4.2  常见错误类型 81

    3.4.3  效率优化 84

    3.4.4  内存优化 85

  3.5  经典案例 90

  3.6  本章小结 97

第4章  图形绘制 98

  4.1  数据图像绘制简介 98

    4.1.1  离散数据可视化 98

    4.1.2  连续函数可视化 100

  4.2  二维绘图 102

    4.2.1  二维绘图命令 102

    4.2.2  二维图形的修饰 104

    4.2.3  子图绘制法 110

    4.2.4  二维绘图的经典应用 112

  4.3  三维绘制 116

    4.3.1  三维绘图基本命令 116

    4.3.2  隐藏线的显示和关闭 119

    4.3.3  三维绘图的实际应用 119

  4.4  特殊图形的绘制 120

    4.4.1  特殊二维图形的绘制 121

    4.4.2  特殊三维图形的绘制 122

  4.5  本章小结 124

第二部分  常规优化算法

第5章  线性规划 127

  5.1  线性规划基本理论 127

    5.1.1  线性规划问题的一般形式 127

    5.1.2  线性规划问题的标准形式 128

    5.1.3  线性规划问题的向量标准形式 128

    5.1.4  非标准形式的标准化 129

    5.1.5  线性规划模型的求解 130

  5.2  优化选项参数设置 131

    5.2.1  创建或编辑优化选项参数 131

    5.2.2  获取优化参数 133

  5.3  线性规划函数 134

    5.3.1  调用格式 134

    5.3.2  参数含义 135

    5.3.3  命令详解 137

    5.3.4  算例求解 138

  5.4  线性规划应用 141

    5.4.1  生产决策问题 141

    5.4.2  工作人员计划安排问题 142

    5.4.3  投资问题 143

    5.4.4  工件加工任务分配问题 144

    5.4.5  厂址选择问题 145

    5.4.6  确定职工编制问题 147

    5.4.7  生产计划的化问题 148

  5.5  本章小结 149

第6章  非线性规划 150

  6.1  非线性规划基础 150

    6.1.1  非线性规划标准形式 150

    6.1.2  解 151

    6.1.3  求解方法概述 151

  6.2  有约束非线性规划函数 153

    6.2.1  调用格式 153

    6.2.2  参数含义 154

    6.2.3  命令详解 160

    6.2.4  算例求解 161

  6.3  一维搜索优化函数 163

    6.3.1  调用格式 163

    6.3.2  参数含义 164

    6.3.3  算例求解 166

  6.4  多维无约束优化函数 167

    6.4.1  调用格式 168

    6.4.2  参数含义 168

    6.4.3  算例求解 170

  6.5  多维无约束搜索函数 172

    6.5.1  调用格式 172

    6.5.2  参数含义 173

    6.5.3  算例求解 174

  6.6  多维非线性小二乘函数 176

    6.6.1  调用格式 176

    6.6.2  参数含义 177

    6.6.3  算例求解 180

  6.7  非线性规划实例 182

    6.7.1  资金调用问题 182

    6.7.2  经营安排问题 184

    6.7.3  广告投入问题 184

  6.8  本章小结 186

第7章  无约束一维极值 187

  7.1  无约束算法概述 187

  7.2  常用算法 188

    7.2.1  进退法 188

    7.2.2  黄金分割法 191

    7.2.3  斐波那契法 194

    7.2.4  牛顿型法 196

    7.2.5  割线法 199

    7.2.6  抛物线法 200

    7.2.7  坐标轮换法 201

  7.3  本章小结 204

第8章  无约束多维极值 205

  8.1  直接法 205

    8.1.1  模式搜索法 206

    8.1.2  单纯形法 207

    8.1.3  Powell法 210

  8.2  间接法 214

    8.2.1  速下降法 214

    8.2.2  共轭梯度法 216

    8.2.3  拟牛顿法 218

  8.3  本章小结 220

第9章  约束优化方法 221

  9.1  约束优化方法简介 221

  9.2  常用算法 222

    9.2.1  随机方向法 222

    9.2.2  复合形法 223

    9.2.3  可行方向法 225

    9.2.4  惩罚函数法 228

  9.3  本章小结 230

第10章  二次规划 231

  10.1  数学模型 231

  10.2  常用算法 231

         10.2.1  拉格朗日法 231

         10.2.2  有效集法 233

  10.3  二次规划函数 236

         10.3.1  调用格式 236

         10.3.2  参数含义 237

         10.3.3  算例求解 240

  10.4  本章小结 242

第11章  多目标优化方法 243

  11.1  数学模型 243

  11.2  多目标线性优化问题求解 244

         11.2.1  理想点法 245

         11.2.2  线性加权和法 247

         11.2.3  小法 249

  11.3  目标规划法 251

  11.4  多目标优化函数 251

         11.4.1  调用格式 252

         11.4.2  参数含义 252

         11.4.3  算例求解 257

  11.5  本章小结 258

第三部分  智能优化算法

第12章  遗传算法 261

  12.1  遗传算法基础 261

         12.1.1  遗传算法基本运算 261

         12.1.2  遗传算法的特点 262

         12.1.3  遗传算法中的术语 262

         12.1.4  遗传算法的应用领域 263

  12.2  遗传算法的原理 263

         12.2.1  遗传算法运算过程 263

         12.2.2  遗传算法编码 266

         12.2.3  适应度及初始群体选取 266

         12.2.4  遗传算法参数设计原则 267

         12.2.5  适应度函数的调整 267

         12.2.6  程序设计 268

  12.3  遗传算法工具箱 272

         12.3.1  命令调用 272

         12.3.2  遗传算法工具箱的调用 276

         12.3.3  遗传算法的优化 279

  12.4  遗传算法的典型应用 285

         12.4.1  求函数极值 285

         12.4.2  旅行商问题 297

         12.4.3  非线性规划问题 302

         12.4.4  多目标优化问题 309

  12.5  本章小结 310

第13章  免疫算法 311

  13.1  基本概念 311

         13.1.1  免疫算法基本原理 311

         13.1.2  免疫算法步骤和流程 312

         13.1.3  免疫系统模型和免疫算法 313

         13.1.4  免疫算法特点 314

  13.2  免疫遗传算法 314

         13.2.1  免疫遗传算法步骤和流程 314

         13.2.2  免疫遗传算法实现 315

  13.3  免疫算法应用 321

         13.3.1  克隆选择应用 321

         13.3.2  短路径规划问题 325

         13.3.3  旅行商问题 327

         13.3.4  故障检测问题 333

  13.4  本章小结 339

第14章  粒子群优化算法 340

  14.1  算法的基本概念 340

         14.1.1  算法构成要素 341

         14.1.2  算法参数设置 342

         14.1.3  算法的基本流程 342

         14.1.4  算法的MATLAB实现 343

         14.1.5  适应度函数 345

  14.2  粒子群优化算法的权重控制 348

         14.2.1  自适应权重法 348

         14.2.2  随机权重法 351

         14.2.3  线性递减权重法 353

  14.3  混合粒子群优化算法 355

         14.3.1  基于杂交的粒子群优化算法 355

         14.3.2  基于自然选择的粒子群优化算法 358

         14.3.3  基于免疫的粒子群优化算法 360

         14.3.4  基于模拟退火的粒子群优化算法 364

  14.4  本章小结 366

第15章  小波变换 367

  15.1  傅里叶变换到小波分析 367

         15.1.1  傅里叶变换 367

         15.1.2  小波分析 369

  15.2  小波分析的常用函数 371

         15.2.1  查询小波函数的基本信息 371

         15.2.2  小波滤波器函数 377

         15.2.3  单层一维小波分解函数 378

         15.2.4  多尺度一维小波分解函数 379

         15.2.5  一维小波系数的单支重构函数 379

  15.3  图像的分解和量化 380

         15.3.1  一维小波变换 380

         15.3.2  二维变换体系 382

  15.4  小波变换经典案例 385

         15.4.1  去噪 385

         15.4.2  压缩 387

  15.5  本章小结 389

第16章  神经网络 390

  16.1  神经网络基本概念 390

         16.1.1  神经网络结构 390

         16.1.2  神经网络学习 391

  16.2  神经网络工具函数 392

         16.2.1  常用神经元激活函数 392

         16.2.2  神经网络通用函数 395

         16.2.3  感知器函数 397

         16.2.4  线性神经网络函数 398

         16.2.5  BP神经网络函数 400

         16.2.6  径向基神经网络函数 403

         16.2.7  自组织特征映射神经网络函数 407

  16.3  神经网络的MATLAB实现 410

         16.3.1  BP神经网络在函数逼近中的应用 410

         16.3.2  RBF神经网络在函数曲线拟合中的应用 414

         16.3.3  Hopfield神经网络在稳定平衡点中的应用 416

         16.3.4  自组织特征映射神经网络在数据分类中的应用 417

         16.3.5  模糊神经网络在函数逼近中的应用 420

  16.4  本章小结 422

第四部分  拓 展 应 用

第17章  分形维数应用 425

  17.1  分形维数概述 425

  17.2  二维分形维数的MATLAB应用 428

  17.3  分形插值算法的应用 434

  17.4  本章小结 438

第18章  经济金融优化应用 439

  18.1  期权定价分析 439

  18.2  收益、风险和有效前沿的计算 443

  18.3  投资组合绩效分析 447

  18.4  固定收益证券的久期和凸度计算 451

  18.5  本章小结 457

参考文献 458

18

MATLAB优化算法(第2版)

  

19

目   录

  

  

  

  

  

  

  

  

  

第4章 图形绘制

 

第二部分 常规优化算法

第5章 线性规划

第6章 非线性规划

第7章 无约束一维极值

第8章 无约束多维极值

第9章 约束优化方法

第10章 二次规划

第11章 多目标优化方法

 

第三部分 智能优化算法

第12章 遗传算法

第13章 免疫算法

第14章 粒子群优化算法

第15章 小波变换

第16章 神经网络

 

第四部分 拓展应用

第17章 分型维数应用

第18章 经济金融优化应用

参考文献
点击展开 点击收起

   相关推荐   

—  没有更多了  —

以下为对购买帮助不大的评价

此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP