• 无人驾驶原理与实践
21年品牌 40万+商家 超1.5亿件商品

无人驾驶原理与实践

正版保障 假一赔十 可开发票

39.02 5.7折 69 全新

库存7件

广东广州
认证卖家担保交易快速发货售后保障

作者申泽邦

出版社机械工业出版社

ISBN9787111614999

出版时间2021-11

装帧平装

开本16开

定价69元

货号26317221

上书时间2024-10-27

兴文书店

三年老店
已实名 已认证 进店 收藏店铺

   商品详情   

品相描述:全新
商品描述
前言
随着近年来机器学习和强化学习理论的发展,众多研究领域和产业掀起了一场人工智能变革。其中,无人驾驶技术深受深度学习和计算机视觉发展的影响,其理论已经日趋成熟,正在向产业化落地迈进。
无人驾驶已经不再遥远。2017年4月,工业和信息化部、国家发展和改革委员会、科技部在印发的《汽车产业中长期发展规划》中提出:到2020年,汽车DA(驾驶辅助)、PA(部分自动驾驶)、CA(有条件自动驾驶)系统新车装配率超过50%,网联式驾驶辅助系统装配率达到10%,满足智慧交通城市建设需求。到2025年,汽车DA、PA、CA新车装配率达到80%,其中PA、CA级新车装配率达到25%,高度和完全自动驾驶汽车开始进入市场。
依托长期以来的技术积累和近期人工智能领域的突破,加之日趋成熟的政策,无人驾驶正在向人们走来。各大互联网公司和汽车巨头大量投入资源发展无人驾驶技术的事实表明,无人驾驶已经逐步成为信息产业和汽车行业的大势所趋。
与当前国内无人驾驶领域快速增长形成鲜明对比的是国内相关专业人才的欠缺,无人驾驶领域的 人才仍然集中于欧洲、美国、日本等发达国家和地区。早在十几年前,美国国防部就举办了DARPA Grand Challenge无人驾驶挑战赛,当今全球  的无人驾驶团队和技术领袖多数是在该赛事中成名的。该比赛也催生了大量无人驾驶关键算法、无人驾驶系统设计理念等,可谓是现代无人驾驶的重要里程碑。相比之下,我国全自动无人驾驶汽车的研究起步晚,关键理论薄弱,专业人才欠缺。因此,要保持国内无人驾驶发展的后劲,就必须重视无人驾驶相关专业人才的培养。
本书即在此大背景下产生。无人驾驶是一个综合了多个学科的应用领域,这些学科包括机器人学、自动化控制、机器学习、机器视觉、移动通信、智能交通、车辆工程等。也正是由于无人驾驶的综合性,目前国内系统介绍无人驾驶的技术书籍相当匮乏。市面上现有的无人驾驶技术中文书籍多为科普类,读者很难通过其真正完成无人驾驶相关技术的理论入门和实战训练。本书旨在通过相对完整的无人驾驶理论介绍和简单易上手的实例帮助读者实现技术入门,让读者对无人驾驶软件系统的整个技术栈有一定的了解。
本书作者包括国内一线无人驾驶科研团队负责人、一线新能源汽车厂商无人驾驶技术专家,他们对整个无人驾驶技术栈有着全面深入的研究,同时拥有丰富的工业应用实践经验。通过本书,读者将系统学习并实战无人驾驶软件系统的感知、规划和控制基础算法,掌握ROS编程,学习并实践多传感器融合方法,学习机器学习、深度学习和强化学习等人工智能方法在无人驾驶中的应用,还将初步了解更接近工业应用的复杂方法。
考虑到工业界多使用Python进行算法原型设计,使用C++进行产品实现,故本书的实践部分采用Python和C++两种编程语言。在阅读本书前,读者应当具备基础的Python或C++编程能力,并且掌握基本的线性代数和概率论等数学知识。
本书适用于希望进入无人驾驶汽车行业的技术人员和高校学生,可作为技术入门书籍,亦可作为无人驾驶应用研究的工具书籍。本书提供了ROS编程、点云匹配定位、基于卡尔曼滤波和扩展卡尔曼滤波的传感器融合、机器学习图像识别、深度学习目标检测、优化轨迹的动作规划算法、纯追踪算法等大量编程实例,方便读者实践。配套源代码可从华章官网下载。
本书从开始编写到出版历时近一年,在此感谢兰州大学未来计算研究院无人驾驶团队的王金强、肖子超、孙宇等人对内容的贡献,同时感谢黄航、漆昱涛等人对内容的审阅。限于作者的学识,加之编写经验不足,本书难免有疏漏之处,肯请各位同行和读者批评指正。

申泽邦周庆国
2018年9月

导语摘要
无人驾驶系统涉及的技术面非常广泛,内容繁多,种类多跨度大。现阶段而言,实现无人驾驶系统主要有两种思路:一是传统的机器人学的思路,另一种是采用深度学习的方法。这两类技术都在不断地发展,汽车公司和科技公司的无人驾驶汽车系统也往往融合了这两类技术。本书将综合这两类技术,为读者从原理到实践详细讲解应用于无人驾驶汽车系统的关键技术,为意图入门无人驾驶汽车领域的读者打好基础。阅读完本书,读者将有能力进入无人驾驶汽车这一前沿领域,进行更加深入的探索。

目录
本书赞誉

前言
教学建议
第1章初识无人驾驶系统
11什么是无人驾驶
111无人驾驶的分级标准
112无人驾驶到底有多难
12为什么需要无人驾驶
121提高道路交通安全
122缓解城市交通拥堵
123提升出行效率
124降低驾驶者的门槛
13无人驾驶系统的基本框架
131环境感知
132定位
133任务规划
134行为规划
135动作规划
136控制系统
137小结
14开发环境配置
141简单环境安装
142ROS安装
143OpenCV安装
15本章参考文献
第2章ROS入门
21ROS简介
211ROS是什么
212ROS的历史
213ROS的特性
22ROS的核心概念
23catkin创建系统
24ROS中的项目组织结构
25基于Husky模拟器的实践
26ROS的基本编程
261ROS C++编程
262编写简单的发布和订阅程序
263ROS中的参数服务
264基于Husky机器人的小案例
27ROS Service
28ROS Action
29ROS中的常用工具
291Rviz
292rqt
293TF坐标转换系统
294URDF和SDF
210本章参考文献
第3章无人驾驶系统的定位方法
31实现定位的原理
32迭代 近点算法
33正态分布变换
331NDT算法介绍
332NDT算法的基本步骤
333NDT算法的优点
334NDT算法实例
34基于GPS+惯性组合导航的定位系统
341定位原理
342不同传感器的定位融合实现
35基于SLAM的定位系统
351SLAM定位原理
352SLAM应用
36本章参考文献
第4章状态估计和传感器融合
41卡尔曼滤波和状态估计
411背景知识
412卡尔曼滤波
413卡尔曼滤波在无人驾驶汽车感知模块中的应用
42高级运动模型和扩展卡尔曼滤波
421应用于车辆追踪的高级运动模型
422扩展卡尔曼滤波
43无损卡尔曼滤波
431运动模型
432非线性过程模型和测量模型
433无损变换
434预测
435测量更新
436小结
44本章参考文献
第5章机器学习和神经网络基础
51机器学习基本概念
52监督学习
521经验风险 小化
522模型、过拟合和欠拟合
523“一定的算法”——梯度下降算法
524小结
53神经网络基础
531神经网络基本结构
532无限容量——拟合任意函数
533前向传播
534随机梯度下降
54使用Keras实现神经网络
541数据准备
542三层网络的小变动——深度前馈神经网络
543小结
55本章参考文献
第6章深度学习和无人驾驶视觉感知
61深度前馈神经网络——为什么要深
611大数据下的模型训练效率
612表示学习
62应用于深度神经网络的正则化技术
621数据集增强
622提前终止
623参数范数惩罚
624Dropout技术
63实战——交通标志识别
631BelgiumTS 数据集
632数据预处理
633使用Keras构造并训练深度前馈网络
64卷积神经网络入门
641什么是卷积以及卷积的动机
642稀疏交互
643参数共享
644等变表示
645卷积神经网络
646卷积的一些细节
65基于YOLO的车辆检测
651预训练分类网络
652训练检测网络
653YOLO的损失函数
654测试
655基于YOLO的车辆和行人检测
66本章参考文献
第7章迁移学习和端到端无人驾驶
71迁移学习
72端到端无人驾驶
73端到端无人驾驶模拟
731模拟器的选择
732数据采集和处理
733深度神经网络模型构建
74本章小结
75本章参考文献
第8章无人驾驶规划入门
81无人车路径规划和A*算法
811有向图
812广度优先搜索算法
813涉及的数据结构
814如何生成路线
815有方向地进行搜索(启发式)
816Dijkstra算法
817A*算法
82分层有限状态机和无人车行为规划
821无人车决策规划系统设计准则
822有限状态机
823分层有限状态机
824状态机在行为规划中的使用
83基于自由边界三次样条插值的无人车路径生成
831三次样条插值
832三次样条插值算法
833使用Python实现三次样条插值进行路径生成
84基于Frenet优化轨迹的无人车动作规划方法
841为什么使用Frenet坐标系
842Jerk 小化和5次轨迹多项式求解
843碰撞避免
844基于Frenet优化轨迹的无人车动作规划实例
85本章参考文献
第9章车辆模型和高级控制
91运动学自行车模型和动力学自行车模型
911自行车模型
912运动学自行车模型
913动力学自行车模型
92无人车控制入门
921为什么需要控制理论
922PID控制
93基于运动学模型的模型预测控制
931将PID控制应用于转向控制存在的问题
932预测模型
933在线滚动优化
934反馈校正
94轨迹追踪
95本章参考文献
第10章深度强化学习及其在自动驾驶中的应用
101强化学习概述
102强化学习原理及过程
1021马尔可夫决策过程
1022强化学习的目标及智能体的要素
1023值函数
103近似价值函数
104深度Q值网络算法
1041Q_Learning算法
1042DQN算法
105策略梯度
106深度确定性策略梯度及TORCS游戏的控制
1061TORCS游戏简介
1062TORCS游戏环境安装
1063深度确定性策略梯度算法
107本章小结
108本章参考文献

内容摘要
无人驾驶系统涉及的技术面非常广泛,内容繁多,种类多跨度大。现阶段而言,实现无人驾驶系统主要有两种思路:一是传统的机器人学的思路,另一种是采用深度学习的方法。这两类技术都在不断地发展,汽车公司和科技公司的无人驾驶汽车系统也往往融合了这两类技术。本书将综合这两类技术,为读者从原理到实践详细讲解应用于无人驾驶汽车系统的关键技术,为意图入门无人驾驶汽车领域的读者打好基础。阅读完本书,读者将有能力进入无人驾驶汽车这一前沿领域,进行更加深入的探索。

   相关推荐   

—  没有更多了  —

以下为对购买帮助不大的评价

此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP