• 数论
21年品牌 40万+商家 超1.5亿件商品

数论

正版保障 假一赔十 可开发票

61.98 7.8折 79 全新

库存5件

广东广州
认证卖家担保交易快速发货售后保障

作者(德)哈塞 著

出版社世界图书出版公司

ISBN9787510027352

出版时间2010-09

装帧平装

开本其他

定价79元

货号20959449

上书时间2024-10-27

兴文书店

三年老店
已实名 已认证 进店 收藏店铺

   商品详情   

品相描述:全新
商品描述
导语摘要
In spite of the fact that nowadays there are quite a few books on algebraic number theory available to the mathematical community, there seems to be still a strong need for a fundamental work like IIasse's ,,Zahlentheorie". This impression is corroborated by the great number of inquiries the editor received about the date of appearance of the English translation of Hasse's book. One main reason for the unbroken interest in this book lies probably in its vivid presentation of the divisortheoretic approach to algebraic number theory, an approach which was developed by Hasse's former teacher IIensel and further expanded by Hasse himseff. Hasse does not content himself with a mere presentation of the number-theoretic material, but he motivates the basic ideas and questions, comments on them in detail,and points out their connections with neighboring branches of mathematics.

目录
part ⅰ. the foundations of arithmetic in the rational number field 
chapter 1. prime decomposition 
function fields 
chapter 2. divisibility 
function fields 
chapter 3. congruences 
function fields 
the theory of finite fields 
chapter 4. the structure of the residue class ring mod m and of the reduced residue class group mod m 
1. general facts concerning direct products and direct sums 
2. direct decomposition of the residue class ring mod m and of the reduced residue class group mod m 
3. the structure of the additive group of the residue class ring mod m 
4. on the structure of the residue class ring mod pμ 
5. the structure of the reduced residue class group mod pμ 
function fields 
chapter 5. quadratic residues 
1. theory of the characters of a finite abelian group 
2. residue class characters and numerical characters mod m 
3. the basic facts concerning quadratic residues 
4. the quadratic reciprocity law for the legendre symbol 

.5. the quadratic reciprocity law for the jacobi symbol 
6. the quadratic reciprocity law as product formula for the hilbcrt symbol 
7. special cases of dirichlet's theorem on prime numbers in reduced residue classes 
function field 
part ⅱ. the theory of valued fields 
chapter 6. the fundamental concepts regarding valuations 
1. the definition of a valuation; equivalent valuations 
2. approximation independence and multiplicative independence of valuations 
3. valuations of the prime field 
4. value groups and residue class fields 
function fields 
chapter 7. arithmetic in a discrete valued field 
divisors from an ideal-theoretic standpoint 
chapter 8. the completion of a valued field 
chapter 9. the completion of a discrete valued field. the lo-adie number fields 
function fields 
chapter 10. the isomorphism types of complete discrete valued fields with perfect residue class field 
1. the multiplicative residue system in the case of prime characteristic 
2. the equal-characteristic case with prime characteristic 
3. the multiplicative residue system in the p-adic number field 
4. witt's vector calculus 
5. construction of the general p-adic field 
6. the unequal-characteristic case 
7. isomorphic residue systems in the case of characteristic 0 
8. the isomorphic residue systems for a rational function field 
9. the equal-characteristic case with characteristic 0 
chapter 11. prolongation of a discrete valuation to a purely transcendental extension 
chapter 12. prolongation of the valuation of a complete field to a finitealgebraic extension 
1. the proof of existence 
2. the proof of completeness 
3. the proof of uniqueness 
chapter 13. the isomorphism types of complete archimedean valued fields 
chapter 14. the structure of a finite-algebraic extension of a complete discrete valued field 
1. embedding of the arithmetic 
2. the totally ramified case 
3. the unramified case with perfect residue class field 
4. the general case with perfect residue class field 
5. the general case with finite residue class field 
chapter 15. the structure of the multiplicative group of a complete discrete valued field with perfect residue class field of prime characteristic 
1. reduction to the one-unit group and its fundamental chain of subgroups 
2. the one-unit group as an abelian operator group 
3. the field of nth roots of unity over a p-adic number field 
4. the structure of the one-unit group in the equal-charaeteristie case with finite residue class field 
5. the structure of the one-unit group in the p-adie case 
6. construction of a system of fundamental one-units in the p-adic case 
7. the one-unit group for special p-adic number fields 
8. comparison of the basis representation of the multiplieative group in the p-adic case and the archimedean case 
chapter 16. the tamely ramified extension types of a complete discrete valued field with finite residue class field of characteristic p 
chapter 17. the exponential function, the logarithm, and powers in a complete non-archimedean valued field of characteristic 0 
1. integral power series in one indeterminate over an arbitrary field 
2. integral power series in one variable in a complete non-archimedean valued field 
3. convergence 
4. functional equations and mutual relations 
5. the discrete case 
6. the equal-characteristic case with characteristic 0 
chapter 18. prolongation of the valuation of a non-complete field to a finite-algebraic extension 
1. representations of a separable finite-algebraic extension over an arbitrary extension of the ground field 
2. the ring extension of a separable finite-algebraic extension by an arbitrary ground field extension, or the tensor product 
of the two field extensions 
3. the characteristic polynomial 
4. supplements for inseparable extensions 
5. prolongation of a valuation 
6. the discrete case 
7. the archimedean case 
part ⅲ. the foundations of arithmetic in algebraic number fields 
chapter 19. relations ]3etween the complete system of valuations and the arithmetic of the rational number field 
1. finiteness properties 
2. characterizations in divisibility theory 
3. the product formula for valuations 
4. the sum formula for the principal parts function fields 
the automorphisms of a rational function field 
chapter 20. prolongation of the complete system of valuations to a finitealgebraic extension 
function fields 
concluding remarks 
chapter 21. the prime spots of an algebraic number field and their completions 
function fields 
chapter 22. decomposition into prime divisors, integrality, and divisibility 
1. the canonical homomorphism of the multiplicative group into the divisor group 
2. embedding of divisibility theory under a finite-algebraic extension 
3. algebraic characterization of integral algebraic numbers 
4. quotient representation 
function fields 
constant fields, constant extensions 
chapter 23. congruences 
1. ordinary congruence 
2. multiplicative congruence 
function fields 
chapter 24. the multiples of a divisor 
1. field bases 
2. the ideal property, ideal bases 
3. congruences for integral elements 
4. divisors from the ideal-theoretic standpoint 
5. further remarks concerning divisors and ideals 
function fields 
constant fields for p. characterization of prime divisors by homomorphisms. decomposition law under an algebraic constant extension 
the rank of the module of multiples of a divisor 
chapter 25. differents and discriminants 
1. composition formula for the trace and norm. the divisor trace 
2. definition of the different and diseriminant 
3. theorems on differents and discriminants in the small 
4. the relationship between differents and discriminants in the small and in the large 
5. theorems on differents and discriminants in the large 
6. common inessential discriminant divisors 
7. examples 
function fields 
the number of first-degree prime divisors in the case of a finite constant field 
differentials 
the riemann-roch theorem and its consequences 
disclosed algebraic function fields 
chapter 26. quadratic number fields 
1. generation in the large and in the small 
2. the decomposition law 
3. discriminants, integral bases 
4. quadratic residue characters of the discriminant of an arbitrary algebraic number field 
5. the quadratic number fields as class fields 
6. the hilbert symbol as norm symbol 
7. the norm theorem 
8. a necessary condition for principal divisors. genera 
chapter 27. cyelotomic fields 
1. generation 
2. the decomposition law 
3. discriminants, integral bases 
4. the quadratic number fields as subfields of cyclotomic fields 
chapter 28. units 
1. preliminaries 
2. proofs 
3. extension 
4. examples and applications 
chapter 29. the class number 
1. finiteness of the class number 
2. consequences 
3. examples and applications 
function fields 
chapter 30. approximation theorems and estimates of the diseriminant 
1. the most general requirements on approximating zero 
2. minkowski's lattice-point theorem 
3. application to convex bodice within the norm-one hypersurface 
4. consequences of the discriminant estimate 
function fields 
index of names 
subject index

内容摘要
In spite of the fact that nowadays there are quite a few books on algebraic number theory available to the mathematical community, there seems to be still a strong need for a fundamental work like IIasse's ,,Zahlentheorie". This impression is corroborated by the great number of inquiries the editor received about the date of appearance of the English translation of Hasse's book. One main reason for the unbroken interest in this book lies probably in its vivid presentation of the divisortheoretic ap

   相关推荐   

—  没有更多了  —

以下为对购买帮助不大的评价

此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP