• 深度学习理论及实战(MATLAB版)
  • 深度学习理论及实战(MATLAB版)
  • 深度学习理论及实战(MATLAB版)
  • 深度学习理论及实战(MATLAB版)
  • 深度学习理论及实战(MATLAB版)
  • 深度学习理论及实战(MATLAB版)
  • 深度学习理论及实战(MATLAB版)
  • 深度学习理论及实战(MATLAB版)
  • 深度学习理论及实战(MATLAB版)
21年品牌 40万+商家 超1.5亿件商品

深度学习理论及实战(MATLAB版)

正版保障 假一赔十 可开发票

42.81 5.4折 79 全新

库存11件

广东广州
认证卖家担保交易快速发货售后保障

作者赵小川、何灏

出版社清华大学出版社

ISBN9787302564218

出版时间2021-02

装帧平装

开本16开

定价79元

货号29207410

上书时间2024-10-26

兴文书店

三年老店
已实名 已认证 进店 收藏店铺

   商品详情   

品相描述:全新
商品描述
前言

15年的学习研究,2年的策划准备,100天的精心撰写,《深度学习理论及实战》(MATLAB版)一书今日付梓,感触颇多。本书是关于人工智能领域“深度学习”理论与技术的著作,谈及本书的特色及心路历程,不妨用几个与“度”有关的关键词来述说。
关键词一: “深度”近年来,以深度学习为代表的人工智能技术发展得如火如荼,也正在改变着人们生活的方方面面。与传统的机器学习相比,深度学习的理论更深、技术更难。本书力图做到深入浅出,尽量用通俗易懂的语言、实用生动的案例把理论与方法讲清楚、说明白。
关键词二: “角度”“深度卷积神经网络”是模仿大脑工作机理的一种智能系统,本书以“系统角度”→“数学角度”→“仿生角度”为主线,对相关知识进行讲解。值得一提的是,本书还从“文化角度”增加了一些中国元素,如: 从《荀子·正名》对“智、能”的解读讲到对人工智能的理解; 以我们学习汉语的过程来说明卷积神经网络的自动提取特征、抽象语义的过程; 以相似的汉字结构变化来类比深度学习中的迁移学习; 以中医针灸来类比激活函数……
关键词三: “温度”撰写带有“温度”的书一直是我所追求的,即使是科技类的书,也不应该是“冰冷”的。因此,在本书中,添加了 “温馨提示” “经验分享”“心得分享”等版块; 在本书讲解的30个程序中,每个程序都做了详细的注释,并且对操作中可能存在的问题也一一进行了提示。
关键词四: “态度”通过这本书,我想传递两个态度。一是“授人以渔”。本书更加注重对方法、过程的讲解,希望读者在实际应用中能够触类旁通、举一反三; 同时还增加了一些“编程体验”的环节,希望读者在动手实践的过程中增加对书中知识的体验。二是“持续学习”。如今,科技与社会迅速发展,持续学习已成为一项重要的能力和素质,本书中的很多内容也是我持续学习的结果。我的包里总会放一本书,地铁上、高铁上、会议前,只要你想学,时间总会有的; 同时,为了写好本书我还认真地学习了多个国内外的相关课程。
关键词五: “适度”宋玉曾言“东家之子,增之一分则太长,减之一分则太短。”此实为本书力求的理想之态——格局内蕴,属意“适度”。然而,任何一本书都有它的局限性,本书也不例外,希望读者在读此书时,多多思考,多多交流,对于本书有待提高之处提出适度的建议,有兴趣的读者可发送邮件到workemail6@163.com。
今天是2020年的母亲节,也以此书献给天下的母亲,尤其是我的家人!
赵小川2020年5月10日于北京

本书提供以下相关配套资源: 

程序代码、习题答案等资料,请扫描下方二维码下载或者到清华大学出版社官方网站本书页面下载。



导语摘要

《深度学习理论及实战(MATLAB版)》主要介绍深度学习理论及实战,共5章,内容包括机器学习、人工神经网络、卷积神经网络、MATLAB深度学习工具箱和应用实例。在介绍基础理论方面,本书深入浅出、语言生动、通俗易懂; 在介绍应用实例时,本书贴近实际、步骤翔实、举一反三。本书对数十个例程进行了深入的讲解,并对代码进行了详细的注解。 《深度学习理论及实战(MATLAB版)》可以作为人工智能、电子信息、计算机科学相关专业的本科生、研究生的教材,也可作为本科毕业设计、研究生学术论文的参考资料,还可作为相关工程技术人员的参考资料。



作者简介

赵小川  男,博士,研究员,博士生导师。武警装备智能化专家委员会委员,北京市科学技术委员会项目评审专家,陆军装备部项目评审专家;中文核心期刊《计算机工程》青年编委;期刊Robotica审稿专家。研究方向是人工智能、计算机视觉。近年来,作为项目负责人主持科研项目20余项,以作者出版学术专著6部,获得国家发明专利12项。



目录

第1章从“机器学习”讲起
1.1走近“机器学习”
1.1.1什么是“机器学习”
1.1.2机器学习的主要任务
1.1.3机器学习的分类
1.1.4什么是“深度学习”
1.1.5机器学习的应用举例
扩展阅读: 对“人工智能”的理解
1.2解读“机器学习的过程”
1.2.1机器学习的过程
1.2.2机器学习中的数据集
1.2.3过拟合与欠拟合
心得分享: “机器学习”与“雕刻时光”
1.3典型的机器学习算法——SVM
1.3.1从“走心”的国界线说起
1.3.2“支持向量机”名字的由来
1.3.3SVM分类器的形式
1.3.4如何找到分类线
1.3.5基于SVM的多分类问题
1.4思考与练习
第2章解析“人工神经网络”
2.1神经元——人工神经网络的基础
2.1.1生物神经元
2.1.2人工神经元
2.1.3激活函数
2.2神经网络的结构及工作原理
2.2.1神经网络的结构组成
2.2.2神经网络的工作原理
2.2.3一些常见的概念
扩展阅读: 人工神经网络发展简史
2.3从数学角度来认识神经网络
2.3.1本书中采用的符号及含义
2.3.2神经元的激活
2.3.3神经网络的学习
2.3.4寻找损失函数小值——梯度下降法
2.3.5误差反向传播
2.3.6基于误差反向传播的参数更新流程
2.4如何基于神经网络进行分类
2.4.1基于神经网络实现二分类
2.4.2基于神经网络实现多分类
扩展阅读: 交叉熵
2.5思考与练习
第3章探索“卷积神经网络”
3.1深入浅出话“卷积”
3.1.1卷积的运算过程
3.1.2卷积核对输出结果的影响
3.1.3卷积运算在图像特征提取中的应用
扩展阅读: 数字图像处理的基础知识
编程体验1: 读入一幅数字图像并显示
编程体验2: 基于MATLAB实现二维图像的滑动卷积
3.2解析“卷积神经网络”
3.2.1从 ImageNet 挑战赛说起
3.2.2卷积神经网络的结构
3.2.3卷积层的工作原理
3.2.4非线性激活函数的工作原理
3.2.5池化层的工作原理
3.2.6卷积神经网络与全连接神经网络的区别
3.2.7从仿生学角度看卷积神经网络
扩展阅读: 创建ImageNet挑战赛初衷
3.3从数学的角度看卷积神经网络
3.3.1本书中采用的符号及含义
3.3.2从数学角度看卷积神经网络的工作过程
3.3.3如何求代价函数
3.3.4采用误差反向传播法确定卷积神经网络的参数
3.4认识经典的“卷积神经网络”
3.4.1解析LeNet5卷积神经网络
3.4.2具有里程碑意义的AlexNet
3.4.3VGG-16卷积神经网络的结构和参数
3.4.4卷积神经网络为何会迅猛发展
3.5思考与练习
第4章基于MATLAB深度学习工具箱的实现与调试
4.1构造一个用于分类的卷积神经网络
4.1.1实例需求
4.1.2开发环境
4.1.3开发步骤
4.1.4常用的构造卷积神经网络的函数
4.1.5构造卷积神经网络
4.1.6程序实现
扩展阅读: 批量归一化层的作用
编程体验: 改变卷积神经网络的结构
4.2训练一个用于预测的卷积神经网络
4.2.1实例需求
4.2.2开发步骤
4.2.3构建卷积神经网络
4.2.4训练卷积神经网络
4.2.5程序实现
扩展阅读1: 设置学习率的经验与技巧
扩展阅读2: 随机失活方法(dropout)的作用
扩展阅读3: 小批量方法(minibatch)的作用
编程体验: 改变网络训练配置参数
4.3采用迁移学习进行物体识别
4.3.1站在巨人的肩膀上——“迁移学习”
4.3.2实例需求
4.3.3开发步骤
4.3.4加载训练好的网络
4.3.5如何对网络结构和样本进行微调
4.3.6函数解析
4.3.7程序实现及运行效果
扩展阅读: 多角度看“迁移学习”
4.4采用 Deep Network Designer实现卷积网络设计
4.4.1什么是Deep Network Designer
4.4.2如何打开Deep Network Designer
4.4.3需求实例
4.4.4在Deep Network Designer中构建卷积神经网络
4.4.5对网络进行训练与验证
4.4.6Deep Network Designer的检验功能
4.5采用Deep Network Designer实现迁移学习
4.5.1基于Deep Network Designer的网络结构调整
4.5.2对网络进行训练
4.6如何显示、分析卷积神经网络
4.6.1如何查看训练好的网络的结构和信息
4.6.2如何画出深度网络的结构图
4.6.3如何用analyzeNetwork函数查看与分析网络
4.7如何加载深度学习工具箱可用的数据集
4.7.1如何加载MATLAB自带的数据集
4.7.2如何加载自己制作的数据集
4.7.3如何加载网络下载的数据集——以CIFAR-10为例
4.7.4如何划分训练集与测试集
编程体验1: 基于CIFAR-10数据集训练卷积神经网络
4.8如何构造一个具有捷径连接的卷积神经网络
4.8.1本节用到的函数
4.8.2实例需求
4.8.3创建含有捷径连接的卷积神经网络的实现步骤
4.8.4程序实现
4.8.5对捷径连接网络进行结构检查
编程体验: 采用例程4.8.2所构建的卷积神经网络进行图像分类
4.9思考与练习
第5章应用案例深度解析
5.1基于卷积神经网络的图像分类
5.1.1什么是图像分类
5.1.2评价分类的指标
5.1.3基于深度学习和数据驱动的图像分类
5.1.4传统的图像分类与基于深度学习的图像分类的区别
5.1.5基于AlexNet的图像分类
5.1.6基于GoogLeNet的图像分类
5.1.7基于卷积神经网络的图像分类抗干扰性分析
扩展阅读: 计算机视觉的发展之路
编程体验: 体验GoogLeNet识别图像的抗噪声能力
5.2基于LeNet卷积神经网络的交通灯识别
5.2.1实例需求
5.2.2卷积神经网络设计
5.2.3加载交通灯数据集
5.2.4程序实现
5.3融合卷积神经网络与支持向量机的图像分类
5.3.1整体思路
5.3.2本节所用到的函数
5.3.3实现步骤与程序
编程体验: 基于AlexNet和SVM的图像分类
5.4基于R-CNN的交通标志检测
5.4.1目标分类、检测与分割
5.4.2目标检测及其难点问题
5.4.3R-CNN目标检测算法的原理及实现过程
5.4.4实例需求
5.4.5实现步骤
5.4.6本节所用到的函数
5.4.7程序实现
5.4.8基于AlexNet迁移学习的R-CNN实现
5.4.9基于Image Labeler的R-CNN目标检测器构建
5.5基于Video Labeler与R-CNN的车辆检测
5.5.1实例需求
5.5.2实现步骤
5.6思考与练习
参考文献



内容摘要

《深度学习理论及实战(MATLAB版)》主要介绍深度学习理论及实战,共5章,内容包括机器学习、人工神经网络、卷积神经网络、MATLAB深度学习工具箱和应用实例。在介绍基础理论方面,本书深入浅出、语言生动、通俗易懂; 在介绍应用实例时,本书贴近实际、步骤翔实、举一反三。本书对数十个例程进行了深入的讲解,并对代码进行了详细的注解。 《深度学习理论及实战(MATLAB版)》可以作为人工智能、电子信息、计算机科学相关专业的本科生、研究生的教材,也可作为本科毕业设计、研究生学术论文的参考资料,还可作为相关工程技术人员的参考资料。



主编推荐

赵小川  男,博士,研究员,博士生导师。武警装备智能化专家委员会委员,北京市科学技术委员会项目评审专家,陆军装备部项目评审专家;中文核心期刊《计算机工程》青年编委;期刊Robotica审稿专家。研究方向是人工智能、计算机视觉。近年来,作为项目负责人主持科研项目20余项,以作者出版学术专著6部,获得国家发明专利12项。



—  没有更多了  —

以下为对购买帮助不大的评价

此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP