正版保障 假一赔十 可开发票
¥ 47.62 5.5折 ¥ 86 全新
库存173件
作者赵金晶 等
出版社电子工业出版社
ISBN9787121473739
出版时间2024-02
装帧平装
开本16开
定价86元
货号29701355
上书时间2024-10-22
全书分为7 个章节。第1 章绪论,梳理了人工智能不同技术流派的特点、深度学习的发展及前沿技术;第2 章介绍相关预备知识,包括线性代数、概率论、优化理论以及机器学习的基础知识;第3 章从前馈神经网络的基础模型——感知器出发,介绍前馈神经网络的基本结构以及涉及的激活函数、梯度下降、反向传播等内容;第4 章,介绍深度模型的优化问题,讨论了神经网络优化中常见的病态问题;第5 章介绍深度学习中的正则化方法,包括范数惩罚、数据集增强与噪声注入、提前停止等;第6 章介绍了卷积神经网络,以及卷积神经网络在计算机视觉领域的具体应用;第7 章通过实际案例介绍循环神经网络与卷积神经网络的结合应用。
赵金晶,女,1981年生,军事科学院系统工程研究院高级工程师,国防科技大学计算机学院博士毕业,主要研究方向为网络与信息安全、人工智能技术。先后承担国家自然科学基金、国家973计划、863计划等重大项目,曾获国家自然科学基金青年基金资助。获省部级科技进步奖二等奖5项、三等奖1项,发明专利20余项。发表学术论文80余篇,出版学术著作2部。电子邮箱:zhjj0420@126.com李虎,男,1987年生,军事科学院系统工程研究院工程师,国防科技大学计算机学院博士毕业,主要研究方向为网络与信息安全。先后承担、参与国家973计划、863计划、装备预研等各类科研项目10余项。获省部级科技进步奖二等奖2项、发明专利10余项,发表论文20余篇。电子邮箱:lihu@nudt.edu.cn张明,男,1990年生,军事科学院系统工程研究院工程师,北京系统工程研究所硕士毕业,主要研究方向为机器学习和人工智能安全。先后参与、主持国家自然科学基金、重点实验室基金、国家973重大项目、装备预研和国防科技创新特区等各类科研项目10余项。获省部级科技进步奖一等奖1项,二等奖2项。发表学术论文20余篇,其中SCI检索5篇,EI检索10余篇。电子邮箱:zm_stiss@163.com
第1 章 绪论····················································································.1
1.1 人工智能·············································································.2
1.1.1 人工智能技术的发展历程···············································.3
1.1.2 人工智能技术的流派·····················································.9
1.2 深度学习与神经网络概述······················································.11
1.2.1 深度学习与神经网络技术的发展历程······························.11
1.2.2 深度学习与神经网络的前沿技术····································.16
1.3 深度学习系统架构·······························································.17
1.4 深度学习框架·····································································.19
1.5 深度学习的应用··································································.20
1.5.1 计算机视觉·······························································.20
1.5.2 语音语义··································································.21
1.5.3 自然语言处理····························································.22
1.6 人工智能潜在的安全风险······················································.22
1.6.1 数据层面的风险·························································.23
1.6.2 算法模型层面的风险···················································.23
1.6.3 智能计算框架层面的风险·············································.23
1.6.4 基础软硬件层面的风险················································.24
1.6.5 应用服务层面的风险···················································.24
本章小结·······&midd
— 没有更多了 —
以下为对购买帮助不大的评价