正版保障 假一赔十 可开发票
¥ 74.8 5.4折 ¥ 138 全新
库存194件
作者李航
出版社清华大学出版社
ISBN9787302597308
出版时间2022-03
装帧平装
开本16开
定价138元
货号29398546
上书时间2024-10-21
2012年《统计学习方法 (第 1版)》出版,内容涵盖监督学习的主要方法, 2019年第 2版出版,增加了无监督学习的主要方法,都属于传统机器学习。在这段时间里,机器学习领域发生了巨大变化,深度学习在人工智能各个应用方向取得了巨大突破,成为机器学习的主流技术,彻底改变了机器学习的面貌。有些读者希望能看到与之前风格相同的讲解深度学习的书籍,这也触发了作者在原来《统计学习方法》的基础上增加深度学习内容的想法(计划今后再增加强化学习)。从 2018年开始,历时 3年左右,完成了深度学习的写作。
考虑到内容的变化,现将书名更改为《机器学习方法》。第 1篇监督学习和第 2篇无监督学习基本为原来的内容,增加第 3篇深度学习,希望对读者有所裨益。传统机器学习是深度学习的基础,所以将这些内容放在一本书里讲述也有其合理之处。虽然深度学习目前是大家关注的重点,但传统机器学习仍然有其不容忽视的地位。事实上,传统机器学习和深度学习各自有更适合的应用场景,比如,深度学习长于大数据、复杂问题的预测,特别是人工智能的应用;传统机器学习善于小数据、相对简单问题的预测。
本书的定位是讲解机器学习的基本内容,并不完全是入门书。介绍的内容都是基本的,在这种意义上适合初学者。但主旨是把重要的原理和方法做系统的总结,方便大家经常阅读和复习。在写第 3篇的时候也接受大家对第 1篇和第 2篇的反馈意见,在力求文字简练清晰的同时,也确保叙述的详尽明了,以方便读者理解。在各章方法的导入部分适当增加了背景和动机的介绍。
第 3篇中使用的数学符号与第 1篇和第 2篇有一定的对应关系,但由于深度学习的特点也有一些改变,也都能自成体系。将符号完全统一于一个框架内还需要做大量的工作,希望在增加第 4篇强化学习之后再做处理。
对第 3篇的原稿,郑诗源、张新松等帮助做了校阅,对一些章节的内容提出了宝贵的意见。责任编辑王倩也为本书的出版做了大量工作。在此对他们表示衷心的感谢。
李航
2021年 5月 27日
机器学习是以概率论、统计学、信息论、**化理论、计算理论等为基础的计算机应用理论学科,也是人工智能、数据挖掘等领域的基础学科。《机器学习方法》全面系统地介绍了机器学习的主要方法,共分三篇。篇介绍监督学习的主要方法,包括感知机、k近邻法、朴素贝叶斯法、决策树、逻辑斯谛回归与**熵模型、支持向量机、Boosting、EM算法、隐马尔可夫模型、条件随机场等;第二篇介绍无监督学习的主要方法,包括聚类、奇异值分解、主成分分析、潜在语义分析、概率潜在语义分析、马尔可夫链蒙特卡罗法、潜在狄利克雷分配、PageRank算法等。第三篇介绍深度学习的主要方法,包括前馈神经网络、卷积神经网络、循环神经网络、序列到序列模型、预训练语言模型、生成对抗网络等。书中每章介绍一两种机器学习方法,详细叙述各个方法的模型、策略和算法。从具体例子入手,由浅入深,帮助读者直观地理解基本思路,同时从理论角度出发,给出严格的数学推导,严谨详实,让读者更好地掌握基本原理和概念。目的是使读者能学会和使用这些机器学习的基本技术。为满足读者进一步学习的需要,书中还对各个方法的要点进行了总结,给出了一些习题,并列出了主要参考文献。 《机器学习方法》是机器学习及相关课程的教学参考书,适合人工智能、数据挖掘等专业的本科生、研究生使用,也供计算机各个领域的专业研发人员参考。
李航,字节跳动科技有限公司人工智能实验室总监, IEEE会士、ACL会士、ACM杰出科学家、CCF杰出会员。研究方向包括信息检索、自然语言处理、统计机器学习及数据挖掘。李航于1988年从日本京都大学电气工程系毕业,1998年获得日本东京大学计算机科学博士。他1990年至2001年就职于日本NEC公司中央研究所,任研究员;2001年至2012年就职于微软亚洲研究院,任高级研究员与主任研究员;2012年至2017年就职于华为技术有限公司诺亚方舟实验室,任首席科学家、主任。李航一直活跃在相关学术领域,曽出版过四部学术专著,并在国际学术会议和国际学术期刊上发表过120多篇学术论文,包括SIGIR, WWW, WSDM, ACL, EMNLP, ICML, NIPS, SIGKDD, AAAI, IJCAI,以及NLE, JMLR, TOIS, IRJ, IPM, TKDE, TWEB, TIST等。他和同事的论文获得了KDD2008应用论文奖,他指导的学生获得了SIGIR2008,ACL2012学生论文奖。李航参与了多项产品开发,包括Microsoft SQL Server 2005, Microsoft Office 2007, Microsoft Live Search 2008, Microsoft Bing 2009, Bing 2010, Office 2010, Office 2012,拥有42项授权美国专利。李航还在国际学术会议和国际学术期刊担任许多重要工作,如大会程序委员会主席,资深委员,及委员,期刊编委,包括SIGIR, WWW, WSDM, ACL, NAACL, EMNLP, NIPS,SIGKDD, ICDM, ACML, IJCAI, IRJ, TIST, JASIST, JCST等。
第1篇 监 督 学 习
第1章 机器学习及监督学习概论 3
11机器学习 3
12机器学习的分类 5
121基本分类 5
122按模型分类 10
123按算法分类 11
124按技巧分类 12
13机器学习方法三要素 13
131模型 13
132策略 14
133算法 16
14模型评估与模型选择 17
141训练误差与测试误差 17
142过拟合与模型选择 18
15正则化与交叉验证 20
151正则化 20
152交叉验证 20
16泛化能力 21
161泛化误差 21
162泛化误差上界 22
17生成模型与判别模型 24
18监督学习应用 24
181分类问题 24
182标注问题 26
183回归问题 27
本章概要 28
继续阅读 29
习题 29
参考文献 29
VIII机器学习方法
第 2章感知机 30
21感知机模型 30
22感知机学习策略 31
221数据集的线性可分性 31
222感知机学习策略 31
23感知机学习算法 32
231感知机学习算法的原始形式 33
232算法的收敛性 35
233感知机学习算法的对偶形式 37
本章概要 39
继续阅读 40
习题 40
参考文献 40
第 3章 k近邻法 41
31 k近邻算法 41
32 k近邻模型 42
321模型 42
322距离度量 42
323 k值的选择 43
324分类决策规则 44
33 k近邻法的实现:kd树 44
331构造 kd树 45
332搜索 kd树 46
本章概要 48
继续阅读 48
习题 48
参考文献 49
第 4章朴素贝叶斯法 50
41朴素贝叶斯法的学习与分类 50
411基本方法 50
412后验概率化的含义 51
42朴素贝叶斯法的参数估计 52
421极大似然估计 52
422学习与分类算法 53
423贝叶斯估计 54
本章概要 55
继续阅读 56
目录 IX
习题 56
参考文献 56
第 5章决策树 57
51决策树模型与学习 57
511决策树模型 57
512决策树与 if-then规则 58
513决策树与条件概率分布 58
514决策树学习 58
52特征选择 60
521特征选择问题 60
522信息增益 61
523信息增益比 64
53决策树的生成 64
531 ID3算法 65
532 C45的生成算法 66
54决策树的剪枝 66
55 CART算法 68
551 CART生成 69
552 CART剪枝 72
本章概要 74
继续阅读 75
习题 75
参考文献 75
第 6章逻辑斯谛回归与熵模型 77
61逻辑斯谛回归模型 77
611逻辑斯谛分布 77
612二项逻辑斯谛回归模型 78
613模型参数估计 79
614多项逻辑斯谛回归 79
62熵模型 80
621熵原理 80
622熵模型的定义 82
623熵模型的学习 83
624极大似然估计 86
63模型学习的化算法 87
631改进的迭代尺度法 87
632拟牛顿法 90
机器学习方法
本章概要 91
继续阅读 92
习题 92
参考文献 93
第 7章支持向量机 94
71线性可分支持向量机与硬间隔化 94
711线性可分支持向量机 94
712函数间隔和几何间隔 96
713间隔化 97
714学习的对偶算法 101
72线性支持向量机与软间隔化 106
721线性支持向量机 106
722学习的对偶算法 107
723支持向量 110
724合页损失函数 111
73非线性支持向量机与核函数 112
731核技巧 112
732正定核 115
733常用核函数 118
734非线性支持向量分类机 120
74序列小化算法 121
741两个变量二次规划的求解方法 122
742变量的选择方法 124
743 SMO算法 126
本章概要 127
继续阅读 129
习题 129
参考文献 129
第 8章 Boosting 131
81 AdaBoost算法 131
811 Boosting的基本思路 131
812 AdaBoost算法 132
813 AdaBoost的例子 134
82 AdaBoost算法的训练误差分析 135
83 AdaBoost算法的解释 137
831前向分步算法 137
832前向分步算法与 AdaBoost 138
目录 XI
84提升树 140
841提升树模型 140
842提升树算法 140
843梯度提升 144
本章概要 145
继续阅读 146
习题 146
参考文献 146
第 9章 EM算法及其推广 148
91 EM算法的引入 148
911 EM算法 148
912 EM算法的导出 151
913 EM算法在无监督学习中的应用 153
92 EM算法的收敛性 153
93 EM算法在高斯混合模型学习中的应用 154
931高斯混合模型 155
932高斯混合模型参数估计的 EM算法 155
94 EM算法的推广 158
941 F函数的极大-极大算法 158
942 GEM算法 160
本章概要 161
继续阅读 162
习题 162
参考文献 162
第 10章隐马尔可夫模型 163
101隐马尔可夫模型的基本概念 163
1011隐马尔可夫模型的定义 163
1012观测序列的生成过程 166
1013隐马尔可夫模型的 3个基本问题 166
102概率计算算法 166
1021直接计算法 166
1022前向算法 167
1023后向算法 169
1024一些概率与期望值的计算 170
103学习算法 172
1031监督学习方法 172
1032 Baum-Welch算法 172
XII机器学习方法
1033 Baum-Welch模型参数估计公式 174
104预测算法 175
1041近似算法 175
1042维特比算法 176
本章概要 179
继续阅读 179
习题 180
参考文献 180
第 11章条件随机场 181
111概率无向图模型 181
1111模型定义 181
1112概率无向图模型的因子分解 183
112条件随机场的定义与形式 184
1121条件随机场的定义 184
1122条件随机场的参数化形式 185
1123条件随机场的简化形式 186
1124条件随机场的矩阵形式 187
113条件随机场的概率计算问题 189
1131前向-后向算法 189
1132概率计算 189
1133期望值的计算 190
114条件随机场的学习算法 191
1141改进的迭代尺度法 191
1142拟牛顿法 194
115条件随机场的预测算法 195
本章概要 197
继续阅读 198
习题 198
参考文献 199
第 12章监督学习方法总结 200
第
2篇
无
监
督
学
习
无监学习
第 13章无监督学习概论 207
131无监督学习基本原理 207
132基本问题 208
133机器学习三要素 210
134无监督学习方法 210
目录 XIII
本章概要 214
继续阅读 215
参考文献 215
第 14章聚类方法 216
141聚类的基本概念 216
1411相似度或距离 216
1412类或簇 219
1413类与类之间的距离 220
142层次聚类 220
143 k均值聚类 222
1431模型 222
1432策略 223
1433算法 224
1434算法特性 225
本章概要 226
继续阅读 227
习题 227
参考文献 227
第 15章奇异值分解 229&
— 没有更多了 —
以下为对购买帮助不大的评价