导语摘要
本书是一部拓扑学入门书籍,适合作为本科生教程。本书特色一是注重培养学生的几何直观能力;二是对于单纯同调的处理重点比较突出,使主要线索不至于被复杂的细节所掩盖;三是注重抽象理论与具体应用的保持平衡。
作者简介
M.A.Armstrong,英国杜伦大学(Durham University)数学系教授。
目录
Preface
Chapter 1 Introduction
1.Euler's theorem
2.Topological equivalence
3.Surfaces
4.Abstract spaces
5.A classification theorem
6.Topological invariants
Chapter 2 Continuity
1.Open and closed sets
2.Continuous functions
3.A space-filling curve
4.The Tietze extension theorem
Chapter 3 Compactness and connectedness
1.Closed bounded subsets of En
2..The Heine-Borel theorem
3.Properties of compact spaces
4.Product spaces
5.Connectedness
6.Joining points by paths
Chapter 4 Identification spaces
1.Constructing a Mobius strip
2.The identification topology
3.Topological groups
4.Orbit spaces
Chapter 5 The fundamental group
1.Homotopic maps
2.Construction of the fundamental group
3.Calculations
4.Homotopy type
5.The Brouwer fixed-point theorem
6.Separation of the plane
7.The boundary of a surface
Chapter 6 Triangulations
1.Triangulating spaces
2.Barycentric subdivision
3.Simplicial approximation
4.The edge group of a complex
5.Triangulating orbit spaces
6.Infinite complexes
Chapter 7 Surfaces
1.Classification
2.Triangulation and orientation
3.Euler characteristics
4.Surgery
5.Surface symbols
Chapter 8 Simplicial homology
1.Cycles and boundaries
2.Homology groups
3.Examples
内容摘要
本书是一部拓扑学入门书籍,适合作为本科生教程。本书特色一是注重培养学生的几何直观能力;二是对于单纯同调的处理重点比较突出,使主要线索不至于被复杂的细节所掩盖;三是注重抽象理论与具体应用的保持平衡。
主编推荐
M.A.Armstrong,英国杜伦大学(Durham University)数学系教授。
以下为对购买帮助不大的评价