• 机器学习及交通应用
21年品牌 40万+商家 超1.5亿件商品

机器学习及交通应用

正版保障 假一赔十 可开发票

41.89 6.2折 68 全新

库存3件

广东广州
认证卖家担保交易快速发货售后保障

作者陈淑燕,马永锋,乔凤祥编著

出版社东南大学出版社

ISBN9787576603620

出版时间2022-09

装帧平装

开本其他

定价68元

货号12278598

上书时间2024-12-18

灵感书店

三年老店
已实名 已认证 进店 收藏店铺

   商品详情   

品相描述:全新
商品描述
目录

Chapter 1 Introduction to Machine Learning

1.1 Definition of Machine Learning

1.2 History of Machine Learning

1.2.1 Artificial Intelligence, Machine Learning, and Deep Learning

1.2.2 Fields Related to Machine Learning

1.3 Workflow of Machine Learning

1.4 Types of Machine Learning Algorithms

1.4.1 Supervised Learning

1.4.2 Unsupervised Learning

1.4.3 Semi-supervised Learning

1.4.4 Reinforced Learning

1.5 Organization of the Textbook

1.6 Summary

Chapter 2 Feature Engineering

2.1 Data Normalization

2.1.1 Min-max Normalization

2.1.2 Standard Normalization

2.2 Data Discretization

2.2.1 Binning

2.2.2 Clustering Analysis

2.2.3 Entropy-based Discretization

2.2.4 Correlation Analysis

2.3 Feature Selection

2.3.1 Filter Feature Selection

2.3.2 Wrapper Feature Selection

2.3.3 Embedded Methods

2.4 Feature Extraction

2.4.1 Principal Components Analysis

2.4.2 Linear Discriminant Analysis

2.4.3 Autoencoder

2.5 Summary

Chapter 3 Instance-Based Learning

3.1 Overview of IBL

3.2 Components of KNN

3.2.1 Measure the Similarity between Instances

3.2.2 How to Choose K

3.2.3 Assign the Class Label

3.2.4 Time Complexity

3.3 Variants of KNN

3.3.1 Attribute Weighted KNN

3.3.2 Distance Weighted KNN

3.4 Strengths and Weaknesses of KNN

Chapter 4 Decision Tree Learning

4.1 Decision Tree Representation

4.1.1 Component of Decision Tree

4.1.2 How to use Decision Trees for Classification?

4.1.3 How to Generate Rules from Decision Trees?

4.1.4 Popular Algorithms to Generate Decision Trees

4.2 ID3 Algorithm

4.2.1 Select the best Attribute

4.2.2 Information Gain

4.2.3 Information Gain for Continuous-valued Attributes

4.2.4 Pseudoeode of ID3

4.3 C4.5 Algorithm

4.4 CART Algorithm

4.4.1 Gini Index

4.4.2 Binary Split Point for Muhivalued Attribute

4.4.3 Flowchart of Generating Tree

4.4.4 Develop Regression Trees by CART Algorithm

4.5 Overfitting and Tree pruning

4.5.1 Overfitting

4.5.2 Pruning Decision Trees

4.6 Pros and Cons of Decision Trees

……

Chapter 5 Support Vector Machines

Chapter 6 Neural Networks

Chapter 7 Ensemble Learning

Chapter 8 Outlier Mining

Chapter 9 Clustering

Chapter 10 Imbalanced Data Classification

Chapter 11 Model Evaluation

Chapter 12 Model Interpretation

Chapter 13 Application of Machine Learning in Transportation

Chapter 14 Course Projects




内容摘要
全书共分为14章:第1章Introduction to Machine Learning;第2章Feature Engineering;第3章  Instance Based Learning edited;第4章 Decision Tree Learning;第5章 Support Vector Machines edited;第6章 Neural Networks;第7章 Ensemble learning;第8章  Outlier Mining;第9章 Clustering;第10章Imbalanced Data Classification;第11章Model Evaluation;第12章Model Interpretation;第13章 Application of Machine Learning in Transportation;第14章 Course Projects。本书以交通数据为对象,以解决交通问题为目标,体现交通工程专业的特点。

精彩内容

全书共分为14章:第1章Introduction to Machine Learning;第2章Feature Engineering;第3章Instance Based Learning edited;第4章Decision Tree Learning;第5章Support Vector Machines edited;第6章Neural Networks;第7章Ensemble learning;第8章OutlierMining;第9章Clustering;第10章Imbalanced Data Classification;第11章Model Evaluation;第12章Model Interpretation;第13章Application of Machine Learning in Transportation;第14章Course Projects。本书以交通数据为对象,以解决交通问题为目标,体现交通工程专业的特点。



   相关推荐   

—  没有更多了  —

以下为对购买帮助不大的评价

此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP