• 飞行控制系统的自愈合控制
21年品牌 40万+商家 超1.5亿件商品

飞行控制系统的自愈合控制

正版保障 假一赔十 可开发票

49.99 6.3折 79 全新

仅1件

广东广州
认证卖家担保交易快速发货售后保障

作者陈复扬,王瑾著

出版社电子工业出版社

ISBN9787121331718

出版时间2017-11

装帧平装

开本16开

定价79元

货号9112718

上书时间2024-09-05

灵感书店

三年老店
已实名 已认证 进店 收藏店铺

   商品详情   

品相描述:全新
商品描述
作者简介
陈复扬,江苏扬州人,工学博士,教授,博士生导师。现为南京航空航天大学自动化学院党委委员、自动控制系教工党支部书记,长期从事自适应控制、故障诊断与容错控制、自修复控制、自愈合控制、飞行控制、物联网与控制技术、量子信息与控制理论、高铁信息控制系统的故障诊断、道路交通管理控制等方面的科学研究。现为中国兵工学会自动控制专业委员会委员、江苏省暨南京市航空航天学会自动控制专业委员会委员。近年来主持国家自然科学基金面上项目2项、航空科学基金1项;获中国航空学会科学技术奖1项、出版专著3部、以靠前作者发表学术论文60余篇( SCI收录30篇)、申请发明专利20项。长期从事《自动控制原理》《自适应控制》《自适应控制与歌唱艺术》课程教学,主持校级教改项目6项、获江苏省教学成果二等奖1项、主编出版教材6部、发表教改论文10篇。

目录
第1 章 绪论 ················································································································ 1
1.1 自愈合控制的研究背景 ··························································································· 1
1.2 国内外研究现状 ······································································································· 2
1.3 研究成果 ·········································································································· 6
第2 章 基于观测器设计的双旋翼直升机故障诊断方法 ····················································· 9
2.1 引言 ····················································································································· 9
2.2 双旋翼直升机控制系统建模及半物理仿真平台 ·················································· 10
2.2.1 纵列式双旋翼直升机 ················································································· 10
2.2.2 双旋翼直升机半物理仿真平台·································································· 13
2.3 基于自适应观测器的多执行器卡死故障诊断 ······················································ 22
2.3.1 执行器卡死故障系统描述 ········································································· 22
2.3.2 鲁棒快速自适应故障估计方法·································································· 23
2.3.3 多模型故障诊断方法 ················································································· 26
2.3.4 仿真与分析 ································································································ 29
2.4 基于自适应滑模观测器的执行器时变故障诊断 ·················································· 34
2.4.1 系统描述 ···································································································· 35
2.4.2 基于自适应滑模观测器的故障诊断方法 ·················································· 36
2.4.3 仿真与分析 ································································································ 39
2.5 相对阶大于1 的非线性系统执行器故障诊断 ······················································ 44
2.5.1 微分几何基本知识 ····················································································· 44
2.5.2 三自由度双旋翼直升机非线性模型分析 ·················································· 45
2.5.3 基于构造辅助输出的执行器故障诊断 ······················································ 46
2.5.4 仿真分析 ···································································································· 50
2.6 本章小结 ················································································································ 53
第3 章 基于自适应控制的双旋翼直升机多故障自愈合控制 ··········································· 54
3.1 引言 ····················································································································· 54
3.2 三自由度双旋翼直升机改进模型 ········································································· 55
3.3 基于自适应控制的多故障自愈合控制器设计 ······················································ 58
3.4 仿真验证及结果分析 ····························································································· 60
3.5 本章小结 ················································································································ 63
第4 章 含有未知参数的四旋翼直升机多故障自愈合控制 ··············································· 64
4.1 引言 ··················································································································· 64
4.2 四旋翼直升机动力学模型 ····················································································· 66
4.3 联级控制系统基本控制器设计 ············································································· 67
4.4 针对执行器部分失效故障的滑模自愈合控制器设计 ·········································· 71
4.5 针对未知参数的自适应容错控制器设计 ······························································ 75
4.6 各控制器间的时间尺度分析 ················································································· 77
4.7 仿真验证及结果分析 ····························································································· 78
4.8 本章小结 ················································································································ 84
第5 章 基于前馈补偿和直接自适应的四旋翼直升机自愈合控制 ··································· 85
5.1 引言 ···················································································································· 85
5.2 四旋翼直升机控制系统与

精彩内容
本书主要介绍自愈合控制概念的起源与研究现状,着重描述飞行控制系统的自愈合控制的新方法。针对三自由度双旋翼直升机,以状态观测器技术为基础研究了三自由度双旋翼直升机在发生执行器故障时的故障诊断方法,为自愈合控制策略设计提供准确的故障诊断结果;针对发生驱动器故障的四旋翼直升机,基于自适应控制理论,介绍了三种针对四旋翼直升机的自愈合控制方法;针对飞行器发生多故障情形,介绍了三种多故障自愈合控制设计方法。数字仿真及半物理仿真结果表明,这些研究结果可增强机载控制自愈合性,从而保证航空器在故障和损伤等恶劣条件下的安全飞行。

   相关推荐   

—  没有更多了  —

以下为对购买帮助不大的评价

此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP