全新正版
¥ 88 全新
库存5件
作者邱春艳
出版社科学出版社
出版时间2019-07
版次31
装帧其他
上书时间2024-11-14
丛书序
前言
第1章 绪论 1
1.1 研究背景 1
1.2 研究目的 3
1.3 研究意义 6
1.4 本书章节安排 9
参考文献 10
第2章 国内外研究现状 12
2.1 群体智能优化算法发展现状 12
2.2 聚类技术在数据挖掘领域的研究现状 16
2.3 多目标优化方法及其在供应链优化领域的应用现状 18
2.4 本章小结 20
参考文献 21
第3章 群体智能相关理论研究 26
3.1 智能优化算法 26
3.2 聚类算法 28
3.3 复杂网络 29
3.4 朴素贝叶斯分类 30
3.5 本章小结 31
参考文献 31
第4章 基于人工蜂群优化的密度峰值聚类 34
4.1 引言 34
4.2 密度峰值聚类算法的改进 35
4.2.1 计算数据点的密度及生成决策图 37
4.2.2 执行初始聚类 38
4.2.3 识别类簇间数据点 39
4.2.4 初选类簇间数据点的类簇标号 40
4.2.5 判定类簇间数据点的类簇标号 41
4.2.6 完成聚类 44
4.3 实验结果 44
4.3.1 类簇间数据点的自动识别 44
4.3.2 任意形状数据集的类簇中心点和类簇数目的自动识别 48
4.3.3 不同形状和大小的数据集的有效聚合 49
4.3.4 分类效果评价 51
4.4 结果分析 52
4.5 本章小结 54
参考文献 54
第5章 基于人工蜂群优化的密度峰值聚类算法的应用 56
5.1 引言 56
5.2 数据来源及预处理 57
5.3 基于人工蜂群的密度峰值聚类算法 59
5.4 聚类结果分析 60
5.5 本章小结 61
参考文献 62
第6章 基于复杂网路和朴素贝叶斯分类的人工蜂群算法 63
6.1 引言 63
6.2 模型建立 66
6.2.1 问题描述 66
6.2.2 解的表达 69
6.3 基于复杂网络的人工蜂群算法 71
6.4 基于复杂网络和朴素贝叶斯分类的人工蜂群算法的实现 73
6.5 推土机制造企业的供应链网络优化 74
6.5.1 全局解集的搜索能力 80
6.5.2 搜索全局解集的速度 89
6.6 算法结果分析 91
6.7 本章小结 93
参考文献 93
群体智能优化算法是模拟自然生物种群智能行为的优化方法,具有良好的寻优性能,因此群体智能算法在求解大规模复杂问题时,具有较高的效率。本书在群体智能的基础上,针对智能优化算法、聚类算法、复杂网络和朴素贝叶斯分类进行理论研究和应用研究。
— 没有更多了 —
以下为对购买帮助不大的评价