• Long-range Interactions, Stochasticity
21年品牌 40万+商家 超1.5亿件商品

Long-range Interactions, Stochasticity

全新正版 极速发货

46.48 6.8折 68 全新

库存3件

广东东莞
认证卖家担保交易快速发货售后保障

作者Albert C.J. Luo,V. A 著

出版社高等教育出版社

ISBN9787040291889

出版时间2010-06

装帧精装

开本其他

定价68元

货号1200127458

上书时间2024-11-24

休闲图书吧

三年老店
已实名 已认证 进店 收藏店铺

   商品详情   

品相描述:全新
商品描述
作者简介
编者:罗朝俊(墨西哥)阿弗莱诺维奇(ValentinAfraimovich)丛书主编:(瑞典)伊布拉基莫夫

Dr.AlbertC.J.LuoisaProfessoratSouthernIllinoisUniversityEdwardsville,USA.
Dr.ValentinAfraimovichisaProiessoratSanLuisPotosiUniversity,Mexico.

目录
1FractionalZaslavskyandHenonDiscreteMaps
VasilyE.Tarasov
1.1Introduction
1.2Fractionalderivatives
1.2.1FractionalRiemann-Liouvillederivatives
1.2.2FractionalCaputoderivatives
1.2.3FractionalLiouvillederivatives
1.2.4Interpretationofequationswithfractionalderivatives.
1.2.5Discretemapswithmemory
1.3FractionalZaslavskymaps
1.3.1DiscreteChirikovandZaslavskymaps
1.3.2FractionaluniversalandZaslavskymap
1.3.3Kickeddampedrotatormap
1.3.4FractionalZaslavskymapfromfractionaldifferentialequations
1.4FractionalH6nonmap
1.4.1Henonmap
1.4.2FractionalHenonmap
1.5FractionalderivativeinthekickedtermandZaslavskymap
1.5.1Fractionalequationanddiscretemap
1.5.2Examples
1.6FractionalderivativeinthekickeddampedtermandgeneralizationsofZaslavskyandHenonmaps
1.6.1Fractionalequationanddiscretemap
1.6.2FractionalZaslavskyandHenonmaps
1.7Conclusion
References

2Self-similarity,StochasticityandFractionality
VladimirVUchaikin
2.1Introduction
2.1.1Tenyearsago
2.1.2Twokindsofmotion
2.1.3Dynamicself-similarity
2.1.4Stochasticself-similarity
2.1.5Self-similarityandstationarity
2.2FromBrownianmotiontoLevymotion
2.2.1Brownianmotion
2.2.2Self-similarBrownianmotioninnonstationarynonhomogeneousenvironment
2.2.3Stablelaws
2.2.4DiscretetimeLevymotion
2.2.5ContinuoustimeLevymotion
2.2.6FractionalequationsforcontinuoustimeLevymotion
2.3FractionalBrownianmotion
2.3.1DifferentialBrownianmotionprocess
2.3.2IntegralBrownianmotionprocess
2.3.3FractionalBrownianmotion
2.3.4FractionalGaussiannoises
2.3.5BarnesandAllanmodel
2.3.6FractionalLevymotion
2.4FractionalPoissonmotion
2.4.1Renewalprocesses
2.4.2Self-similarrenewalprocesses
2.4.3Threeformsoffractaldustgenerator
2.4.4ntharrivaltimedistribution
2.4.5FractionalPoissondistribution
2.5FractionalcompoundPoissonprocess
2.5.1CompoundPoissonprocess
2.5.2Levy-Poissonmotion
2.5.3FractionalcompoundPoissonmotion
2.5.4Alinkbetweensolutions
2.5.5FractionalgeneralizationoftheLevymotion
Acknowledgments
Appendix.Fractionaloperators
References

3Long-rangeInteractionsandDilutedNetworks
AntoniaCiani,DuccioFanelliandStefanoRuffo
3.1Long-rangeinteractions
3.1.1Lackofadditivity
3.1.2Equilibriumanomalies:Ensembleinequivalence,negativespecificheatandtemperaturejumps
3.1.3Non-equilibriumdynamicalproperties
3.1.4QuasiStationaryStates
3.1.5Physicalexamples
3.1.6Generalremarksandoutlook
3.2HamiltonianMeanFieldmodel:equilibriumandout-of-equilibriumfeatures
3.2.1Themodel
3.2.2Equilibriumstatisticalmechanics
3.2.3OntheemergenceofQuasiStationaryStates:Non-
equilibriumdynamics
3.3IntroducingdilutionintheHamiltonianMeanFieldmodel
3.3.1HamiltonianMeanFieldmodelonadilutednetwork
3.3.2OnequilibriumsolutionofdilutedHamiltonianMeanField
3.3.3OnQuasiStationaryStatesinpresenceofdilution
3.3.4Phasetransition
3.4Conclusions
Acknowledgments
References

4MetastabilityandTransientsinBrainDynamics:ProblemsandRigorousResults
ValentinS.Afraimovich,MehmetK.Muezzinogluand
MikhailI.Rabinovich
4.1Introduction:whatwediscussandwhynow
4.1.1Dynamicalmodelingofcognition
4.1.2Brainimaging
4.1.3Dynamicsofemotions
4.2Mentalmodes
4.2.1Statespace
4.2.2Functionalnetworks
4.2.3Emotion-cognitiontandem
4.2.4Dynamicalmodelofconsciousness
4.3Competition——robustnessandsensitivity
4.3.1Transientsversusattractorsinbrain
4.3.2Cognitivevariables
4.3.3Emotionalvariables
4.3.4Metastabilityanddynamicalprinciples
4.3.5Winnerlesscompetition——structuralstabilityoftransients
4.3.6Examples:competitivedynamicsinsensorysystems
4.3.7Stableheteroclinicchannels
4.4Basicecologicalmodel
4.4.1TheLotka-Volterrasystem
4.4.2Stressandhysteresis
4.4.3Moodandcognition
4.4.4Intermittentheteroclinicchannel
4.5Conclusion
Acknowledgments
Appendix1
Appendix2
References

5DynamicsofSolitonChains:FromSimpletoComplexandChaoticMotions
KonstantinA.Gorshkov,LevA.OstrovskyandYuryA.Stepanyants
5.1Introduction
5.2Stablesolitonlatticesandahierarchyofenvelopesolitons
5.3ChainsofsolitonswithintheframeworkoftheGardnermodel
5.4Unstablesolitonlatticesandstochastisation
5.5Solitonstochastisationandstrongwaveturbulenceinaresonatorwithexternalsinusoidalpumping
5.6Chainsoftwo-dimensionalsolitonsinpositive-dispersionmedia
5.7Conclusion
FewwordsinmemoryofGeorgeM.Zaslavsky
References

6WhatisControlofTurbulenceinCrossedFields?-DontEvenThinkofEliminatingAllVortexes!
DimitriVolchenkov
6.1Introduction
6.2Stochastictheoryofturbulenceincrossedfields:vortexesofallsizesdieout,butone
6.2.1Themethodofrenormalizationgroup
6.2.2Phenomenologyoffullydevelopedisotropicturbulence
6.2.3QuantumfieldtheoryformulationofstochasticNavier-Stokesturbulence
6.2.4AnalyticalpropertiesofFeynmandiagrams
6.2.5UltravioletrenormalizationandRG-equations
6.2.6WhatdotheRGrepresentationssum?
6.2.7Stochasticmagnetichydrodynamics
6.2.8Renormalizationgroupinmagnetichydrodynamics
6.2.9Criticaldimensionsinmagnetichydrodynamics
6.2.10Criticaldimensionsofcompositeoperatorsinmagnetichydrodynamics
6.2.11Operatorsofthecanonicaldimensiond=2
6.2.12Vectoroperatorsofthecanonicaldimensiond=3
6.2.13Instabilityinmagnetichydrodynamics
6.2.14Longlifetoeddiesofapreferablesize
6.3Insearchofloststability
6.3.1Phenomenologyoflong-rangeturbulenttransportinthescrape-offlayer(SOL)ofthermonuclearreactors
6.3.2Stochasticmodelsofturbulenttransportincross-fieldsystems
6.3.3Iterativesolutionsincrossedfields
6.3.4Functionalintegralformulationofcross-fieldturbulenttransport
6.3.5Large-scaleinstabilityofiterativesolutions
6.3.6Turbulencestabilizationbythepoloidalelectricdrift
6.3.7QualitativediscretetimemodelofanomaloustransportintheSOL
6.4Conclusion
References

7EntropyandTransportinBilliards
M.CourbageandS.M.SaberiFathi
7.1Introduction
7.2Entropy
7.2.1EntropyintheLorentzgas
7.2.2Somedynamicalpropertiesofthebarrierbilliardmodel
7.3Transport
7.3.1TransportinLorentzgas
7.3.2Transportinthebarrierbilliard
7.4Concludingremarks
References
Index

内容摘要
In memory of Dr. George Zaslavsky, Long-range Interaction, Stochasticity and Fractional Dynamics covers the recent developments of long-range interaction, fractional dynamics, brain dynamics and stochastic theory of turbulence, each chapter was written by established scientists in the field. The book is dedicated to Dr. George Zaslavsky, who was one of three founders of the theory of Hamiltonian chaos. The book discusses self-similarity and stochasticity and fractionality for discrete and continuous dynamical systems, as well as long-range interactions and diluted networks. A comprehensive theory for brain dynamics is also presented. In addition, the complexity and stochasticity for soliton chains and turbulence are addressed.
The book is intended for researchers in the field of nonlinear dynamics in mathematics, physics and engineering. 
Dr. Albert C.J. Luo is a Professor at Southern Illinois University Edwardsville, USA. Dr. Valentin Afraimovich is a Professor at San Luis Potosi University, Mexico.
本书介绍了连续及离散动力系统的自相似、随机性及分数维性。

主编推荐
《长距离相互作用、随机及分数维动力学》编辑推荐:NonlinearPhysicalSciencefocusesontherecentadvancesoffundamentaltheoriesandprinciples,analyticalandsymbolicapproaches,aswellascomputationaltechniquesinnonlinearphysicalscienceandnonlinearmathematicswithengineeringapplications.

—  没有更多了  —

以下为对购买帮助不大的评价

此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP