Long-range Interactions, Stochasticity
全新正版 极速发货
¥
46.48
6.8折
¥
68
全新
库存3件
作者 Albert C.J. Luo,V. A 著
出版社 高等教育出版社
ISBN 9787040291889
出版时间 2010-06
装帧 精装
开本 其他
定价 68元
货号 1200127458
上书时间 2024-11-24
商品详情
品相描述:全新
商品描述
作者简介 编者:罗朝俊(墨西哥)阿弗莱诺维奇(ValentinAfraimovich)丛书主编:(瑞典)伊布拉基莫夫 Dr.AlbertC.J.LuoisaProfessoratSouthernIllinoisUniversityEdwardsville,USA. Dr.ValentinAfraimovichisaProiessoratSanLuisPotosiUniversity,Mexico. 目录 1FractionalZaslavskyandHenonDiscreteMaps VasilyE.Tarasov 1.1Introduction 1.2Fractionalderivatives 1.2.1FractionalRiemann-Liouvillederivatives 1.2.2FractionalCaputoderivatives 1.2.3FractionalLiouvillederivatives 1.2.4Interpretationofequationswithfractionalderivatives. 1.2.5Discretemapswithmemory 1.3FractionalZaslavskymaps 1.3.1DiscreteChirikovandZaslavskymaps 1.3.2FractionaluniversalandZaslavskymap 1.3.3Kickeddampedrotatormap 1.3.4FractionalZaslavskymapfromfractionaldifferentialequations 1.4FractionalH6nonmap 1.4.1Henonmap 1.4.2FractionalHenonmap 1.5FractionalderivativeinthekickedtermandZaslavskymap 1.5.1Fractionalequationanddiscretemap 1.5.2Examples 1.6FractionalderivativeinthekickeddampedtermandgeneralizationsofZaslavskyandHenonmaps 1.6.1Fractionalequationanddiscretemap 1.6.2FractionalZaslavskyandHenonmaps 1.7Conclusion References 2Self-similarity,StochasticityandFractionality VladimirVUchaikin 2.1Introduction 2.1.1Tenyearsago 2.1.2Twokindsofmotion 2.1.3Dynamicself-similarity 2.1.4Stochasticself-similarity 2.1.5Self-similarityandstationarity 2.2FromBrownianmotiontoLevymotion 2.2.1Brownianmotion 2.2.2Self-similarBrownianmotioninnonstationarynonhomogeneousenvironment 2.2.3Stablelaws 2.2.4DiscretetimeLevymotion 2.2.5ContinuoustimeLevymotion 2.2.6FractionalequationsforcontinuoustimeLevymotion 2.3FractionalBrownianmotion 2.3.1DifferentialBrownianmotionprocess 2.3.2IntegralBrownianmotionprocess 2.3.3FractionalBrownianmotion 2.3.4FractionalGaussiannoises 2.3.5BarnesandAllanmodel 2.3.6FractionalLevymotion 2.4FractionalPoissonmotion 2.4.1Renewalprocesses 2.4.2Self-similarrenewalprocesses 2.4.3Threeformsoffractaldustgenerator 2.4.4ntharrivaltimedistribution 2.4.5FractionalPoissondistribution 2.5FractionalcompoundPoissonprocess 2.5.1CompoundPoissonprocess 2.5.2Levy-Poissonmotion 2.5.3FractionalcompoundPoissonmotion 2.5.4Alinkbetweensolutions 2.5.5FractionalgeneralizationoftheLevymotion Acknowledgments Appendix.Fractionaloperators References 3Long-rangeInteractionsandDilutedNetworks AntoniaCiani,DuccioFanelliandStefanoRuffo 3.1Long-rangeinteractions 3.1.1Lackofadditivity 3.1.2Equilibriumanomalies:Ensembleinequivalence,negativespecificheatandtemperaturejumps 3.1.3Non-equilibriumdynamicalproperties 3.1.4QuasiStationaryStates 3.1.5Physicalexamples 3.1.6Generalremarksandoutlook 3.2HamiltonianMeanFieldmodel:equilibriumandout-of-equilibriumfeatures 3.2.1Themodel 3.2.2Equilibriumstatisticalmechanics 3.2.3OntheemergenceofQuasiStationaryStates:Non- equilibriumdynamics 3.3IntroducingdilutionintheHamiltonianMeanFieldmodel 3.3.1HamiltonianMeanFieldmodelonadilutednetwork 3.3.2OnequilibriumsolutionofdilutedHamiltonianMeanField 3.3.3OnQuasiStationaryStatesinpresenceofdilution 3.3.4Phasetransition 3.4Conclusions Acknowledgments References 4MetastabilityandTransientsinBrainDynamics:ProblemsandRigorousResults ValentinS.Afraimovich,MehmetK.Muezzinogluand MikhailI.Rabinovich 4.1Introduction:whatwediscussandwhynow 4.1.1Dynamicalmodelingofcognition 4.1.2Brainimaging 4.1.3Dynamicsofemotions 4.2Mentalmodes 4.2.1Statespace 4.2.2Functionalnetworks 4.2.3Emotion-cognitiontandem 4.2.4Dynamicalmodelofconsciousness 4.3Competition——robustnessandsensitivity 4.3.1Transientsversusattractorsinbrain 4.3.2Cognitivevariables 4.3.3Emotionalvariables 4.3.4Metastabilityanddynamicalprinciples 4.3.5Winnerlesscompetition——structuralstabilityoftransients 4.3.6Examples:competitivedynamicsinsensorysystems 4.3.7Stableheteroclinicchannels 4.4Basicecologicalmodel 4.4.1TheLotka-Volterrasystem 4.4.2Stressandhysteresis 4.4.3Moodandcognition 4.4.4Intermittentheteroclinicchannel 4.5Conclusion Acknowledgments Appendix1 Appendix2 References 5DynamicsofSolitonChains:FromSimpletoComplexandChaoticMotions KonstantinA.Gorshkov,LevA.OstrovskyandYuryA.Stepanyants 5.1Introduction 5.2Stablesolitonlatticesandahierarchyofenvelopesolitons 5.3ChainsofsolitonswithintheframeworkoftheGardnermodel 5.4Unstablesolitonlatticesandstochastisation 5.5Solitonstochastisationandstrongwaveturbulenceinaresonatorwithexternalsinusoidalpumping 5.6Chainsoftwo-dimensionalsolitonsinpositive-dispersionmedia 5.7Conclusion FewwordsinmemoryofGeorgeM.Zaslavsky References 6WhatisControlofTurbulenceinCrossedFields?-DontEvenThinkofEliminatingAllVortexes! DimitriVolchenkov 6.1Introduction 6.2Stochastictheoryofturbulenceincrossedfields:vortexesofallsizesdieout,butone 6.2.1Themethodofrenormalizationgroup 6.2.2Phenomenologyoffullydevelopedisotropicturbulence 6.2.3QuantumfieldtheoryformulationofstochasticNavier-Stokesturbulence 6.2.4AnalyticalpropertiesofFeynmandiagrams 6.2.5UltravioletrenormalizationandRG-equations 6.2.6WhatdotheRGrepresentationssum? 6.2.7Stochasticmagnetichydrodynamics 6.2.8Renormalizationgroupinmagnetichydrodynamics 6.2.9Criticaldimensionsinmagnetichydrodynamics 6.2.10Criticaldimensionsofcompositeoperatorsinmagnetichydrodynamics 6.2.11Operatorsofthecanonicaldimensiond=2 6.2.12Vectoroperatorsofthecanonicaldimensiond=3 6.2.13Instabilityinmagnetichydrodynamics 6.2.14Longlifetoeddiesofapreferablesize 6.3Insearchofloststability 6.3.1Phenomenologyoflong-rangeturbulenttransportinthescrape-offlayer(SOL)ofthermonuclearreactors 6.3.2Stochasticmodelsofturbulenttransportincross-fieldsystems 6.3.3Iterativesolutionsincrossedfields 6.3.4Functionalintegralformulationofcross-fieldturbulenttransport 6.3.5Large-scaleinstabilityofiterativesolutions 6.3.6Turbulencestabilizationbythepoloidalelectricdrift 6.3.7QualitativediscretetimemodelofanomaloustransportintheSOL 6.4Conclusion References 7EntropyandTransportinBilliards M.CourbageandS.M.SaberiFathi 7.1Introduction 7.2Entropy 7.2.1EntropyintheLorentzgas 7.2.2Somedynamicalpropertiesofthebarrierbilliardmodel 7.3Transport 7.3.1TransportinLorentzgas 7.3.2Transportinthebarrierbilliard 7.4Concludingremarks References Index 内容摘要 In memory of Dr. George Zaslavsky, Long-range Interaction, Stochasticity and Fractional Dynamics covers the recent developments of long-range interaction, fractional dynamics, brain dynamics and stochastic theory of turbulence, each chapter was written by established scientists in the field. The book is dedicated to Dr. George Zaslavsky, who was one of three founders of the theory of Hamiltonian chaos. The book discusses self-similarity and stochasticity and fractionality for discrete and continuous dynamical systems, as well as long-range interactions and diluted networks. A comprehensive theory for brain dynamics is also presented. In addition, the complexity and stochasticity for soliton chains and turbulence are addressed. The book is intended for researchers in the field of nonlinear dynamics in mathematics, physics and engineering. Dr. Albert C.J. Luo is a Professor at Southern Illinois University Edwardsville, USA. Dr. Valentin Afraimovich is a Professor at San Luis Potosi University, Mexico. 本书介绍了连续及离散动力系统的自相似、随机性及分数维性。 主编推荐 《长距离相互作用、随机及分数维动力学》编辑推荐:NonlinearPhysicalSciencefocusesontherecentadvancesoffundamentaltheoriesandprinciples,analyticalandsymbolicapproaches,aswellascomputationaltechniquesinnonlinearphysicalscienceandnonlinearmathematicswithengineeringapplications.
— 没有更多了 —
以下为对购买帮助不大的评价