①一般下午5点前订单,当日发货,开发票联系客服②教材,学习,考试类书默认有笔记(或做过)③其他类书一般无笔记,提前与客服沟通好再下单,否则本店不承担责任)④部分图书籍采用标准图片,可能存在不同印次不同封面,内容一致⑤出版时间过长的书都可能有自然发黄现象。
¥ 74.25 7.5折 ¥ 99 九品
库存10件
作者耿嘉安
出版社机械工业出版社
ISBN9787111522348
出版时间2016-01
装帧平装
开本16开
定价99元
货号1011947729419092490
上书时间2024-11-12
Preface 前言为什么写这本书要回答这个问题,需要从我个人的经历说起。说来惭愧,我第一次接触计算机是在高三。当时跟大家一起去网吧玩CS,跟身边的同学学怎么“玩”。正是通过这种“玩”的过程,让我了解到计算机并没有那么神秘,它也只是台机器,用起来似乎并不比打开电视机费劲多少。高考填志愿的时候,凭着直觉“糊里糊涂”就选择了计算机专业。等到真正学习计算机课程的时候却又发现,它其实很难!
早在2004年,还在学校的我跟很多同学一样,喜欢看Flash,也喜欢谈论Flash甚至做Flash。感觉Flash正如它的名字那样“闪光”。那些年,在学校里,知道Flash的人可要比知道Java的人多得多,这说明当时的Flash十分火热。此外,Oracle也成为关系型数据库里的领军人物,很多人甚至觉得懂Oracle要比懂Flash、Java及其他数据库要厉害得多!
2007年,我刚刚参加工作不久。那时Struts1、Spring、Hibernate几乎可以称为那些用Java作为开发语言的软件公司的三驾马车。很快,Struts2替代了Struts1的地位,让我第一次意识到IT领域的技术更新竟然如此之快!随着很多传统软件公司向互联网公司转型,Hibernate也难以确保其地位,iBATIS诞生了!
2010年,有关Hadoop的技术图书涌入中国,当时很多公司用它只是为了数据统计、数据挖掘或者搜索。一开始,人们对于Hadoop的认识和使用可能相对有限。大约2011年的时候,关于云计算的概念在网上炒得火热,当时依然在做互联网开发的我,对其只是“道听途说”。后来跟同事借了一本有关云计算的书,回家挑着看了一些内容,也没什么收获,怅然若失!20世纪60年代,美国的军用网络作为互联网的雏形,很多内容已经与云计算中的某些说法类似。到20世纪80年代,互联网就已经启用了云计算,如今为什么又要重提这样的概念?这个问题我可能回答不了,还是交给历史吧。
2012年,国内又呈现出大数据热的态势。从国家到媒体、教育、IT等几乎所有领域,人人都在谈大数据。我的亲戚朋友中,无论老师、销售人员,还是工程师们都可以针对大数据谈谈自己的看法。我也找来一些Hadoop的书籍进行学习,希望能在其中探索到大数据的奥妙。
有幸在工作过程中接触到阿里的开放数据处理服务(open data processing service,ODPS),并且基于ODPS与其他小伙伴一起构建阿里的大数据商业解决方案—御膳房。去杭州出差的过程中,有幸认识和仲,跟他学习了阿里的实时多维分析平台—Garuda和实时计算平台—Galaxy的部分知识。和仲推荐我阅读Spark的源码,这样会对实时计算及流式计算有更深入的了解。2015年春节期间,自己初次上网查阅Spark的相关资料学习,开始研究Spark源码。还记得那时只是出于对大数据的热爱,想使自己在这方面的技术能力有所提升。
从阅读Hibernate源码开始,到后来阅读Tomcat、Spring的源码,我也在从学习源码的过程中成长,我对源码阅读也越来越感兴趣。随着对Spark源码阅读的深入,发现很多内容从网上找不到答案,只能自己“硬啃”了。随着自己的积累越来越多,突然有一天发现,我所总结的这些内容好像可以写成一本书了!从闪光(Flash)到火花(Spark),足足有11个年头了。无论是Flash、Java,还是Spring、iBATIS,我一直扮演着一个追随者,我接受这些书籍的洗礼,从未给予。如今我也是Spark的追随者,不同的是,我不再只想简单攫取,还要给予。
最后还想说一下,2016年是我从事IT工作的第10个年头,此书特别作为送给自己的10周年礼物。
本书特色按照源码分析的习惯设计,从脚本分析到初始化再到核心内容,最后介绍Spark的扩展内容。整个过程遵循由浅入深、由深到广的基本思路。
本书涉及的所有内容都有相应的例子,以便于读者对源码的深入研究。
本书尽可能用图来展示原理,加速读者对内容的掌握。
本书讲解的很多实现及原理都值得借鉴,能帮助读者提升架构设计、程序设计等方面的能力。
本书尽可能保留较多的源码,以便于初学者能够在像地铁、公交这样的地方,也能轻松阅读。
读者对象源码阅读是一项苦差事,人力和时间成本都很高,尤其是对于Spark陌生或者刚刚开始学习的人来说,难度可想而知。本书尽可能保留源码,使得分析过程不至于产生跳跃感,目的是降低大多数人的学习门槛。如果你是从事IT工作1~3年的新人或者是希望学习Spark核心知识的人,本书非常适合你。如果你已经对Spark有所了解或者已经在使用它,还想进一步提高自己,那么本书更适合你。
如果你是一个开发新手,对Java、Linux等基础知识不是很了解,那么本书可能不太适合你。如果你已经对Spark有深入的研究,本书也许可以作为你的参考资料。
总体说来,本书适合以下人群:
想要使用Spark,但对Spark实现原理不了解,不知道怎么学习的人;大数据技术爱好者,以及想深入了解Spark技术内部实现细节的人;有一定Spark使用基础,但是不了解Spark技术内部实现细节的人;对性能优化和部署方案感兴趣的大型互联网工程师和架构师;开源代码爱好者。喜欢研究源码的同学可以从本书学到一些阅读源码的方式与方法。
本书不会教你如何开发Spark应用程序,只是用一些经典例子演示。本书简单介绍Hadoop MapReduce、Hadoop YARN、Mesos、Tachyon、ZooKeeper、HDFS、Amazon S3,但不会过多介绍这些框架的使用,因为市场上已经有丰富的这类书籍供读者挑选。本书也不会过多介绍Scala、Java、Shell的语法,读者可以在市场上选择适合自己的书籍阅读。
如何阅读本书本书分为三大部分(不包括附录):
准备篇(第1~2章),简单介绍了Spark的环境搭建和基本原理,帮助读者了解一些背景知识。
核心设计篇(第3~7章),着重讲解SparkContext的初始化、存储体系、任务提交与执行、计算引擎及部署模式的原理和源码分析。
扩展篇(第8~11章),主要讲解基于Spark核心的各种扩展及应用,包括:SQL处理引擎、Hive处理、流式计算框架Spark Streaming、图计算框架GraphX、机器学习库MLlib等内容。
本书最后还添加了几个附录,包括:附录A介绍的Spark中最常用的工具类Utils;附录B是Akka的简介与工具类AkkaUtils的介绍;附录C为Jetty的简介和工具类JettyUtils的介绍;附录D为Metrics库的简介和测量容器MetricRegistry的介绍;附录E演示了Hadoop1.0版本中的word count例子;附录F介绍了工具类CommandUtils的常用方法;附录G是关于Netty的简介和工具类NettyUtils的介绍;附录H列举了笔者编译Spark源码时遇到的问题及解决办法。
为了降低读者阅读理解Spark源码的门槛,本书尽可能保留源码实现,希望读者能够怀着一颗好奇的心,Spark当前很火热,其版本更新也很快,本书以Spark 1.2.3版本为主,有兴趣的读者也可按照本书的方式,阅读Spark的最新源码。
勘误和支持本书内容很多,限于笔者水平有限,书中内容难免有错误之处。在本书出版后的任何时间,如果你对本书有任何问题或者意见,都可以通过邮箱beliefer@163.com或博客http://www.cnblogs.com/jiaan-geng/联系我,说出你的建议或者想法,希望与大家共同进步。
致谢感谢苍天,让我生活在这样一个时代,能接触互联网和大数据;感谢父母,这么多年来,在学习、工作及生活上的帮助与支持;感谢妻子在生活中的照顾和谦让。
感谢杨福川和高婧雅给予本书出版的大力支持与帮助。
感谢冰夷老大和王贲老大让我有幸加入阿里,接触大数据应用;感谢和仲对Galaxy和Garuda耐心细致的讲解以及对Spark的推荐;感谢张中在百忙之中给本书写评语;感谢周亮、澄苍、民瞻、石申、清无、少侠、征宇、三步、谢衣、晓五、法星、曦轩、九翎、峰阅、丁卯、阿末、紫丞、海炎、涵康、云飏、孟天、零一、六仙、大知、井凡、隆君、太奇、晨炫、既望、宝升、都灵、鬼厉、归钟、梓撤、昊苍、水村、惜冰、惜陌、元乾等同仁在工作上的支持和帮助。
耿嘉安 于北京
耿嘉安,10年IT行业相关经验。就职于阿里巴巴商家业务事业部,任资深Java工程师,专注于开源和大数据领域,目前与小伙伴们基于ODPS构建阿里的大数据商业解决方案——御膳房。在大量的工作实践中,对J2EE、JVM、Tomcat、Spring、Hadoop、Spark、MySQL、Redis都有深入研究,尤其喜欢剖析开源项目的源码实现。早期从事J2EE企业级应用开发,对Java相关技术有独到见解。业余时间喜欢研究中国古代历史,古诗词,旅游,足球等。
前言
准 备 篇
第1章 环境准备2
1.1 运行环境准备2
1.1.1 安装JDK3
1.1.2 安装Scala3
1.1.3 安装Spark4
1.2 Spark初体验4
1.2.1 运行spark-shell4
1.2.2 执行word count5
1.2.3 剖析spark-shell7
1.3 阅读环境准备11
1.4 Spark源码编译与调试13
1.5 小结17
第2章 Spark设计理念与基本架构18
2.1 初识Spark18
2.1.1 Hadoop MRv1的局限18
2.1.2 Spark使用场景20
2.1.3 Spark的特点20
2.2 Spark基础知识20
2.3 Spark基本设计思想22
2.3.1 Spark模块设计22
2.3.2 Spark模型设计24
2.4 Spark基本架构25
2.5 小结26
核心设计篇
第3章 SparkContext的初始化28
3.1 SparkContext概述28
3.2 创建执行环境SparkEnv30
3.2.1 安全管理器SecurityManager31
3.2.2 基于Akka的分布式消息系统ActorSystem31
3.2.3 map任务输出跟踪器mapOutputTracker32
3.2.4 实例化ShuffleManager34
3.2.5 shuffle线程内存管理器ShuffleMemoryManager34
3.2.6 块传输服务BlockTransferService35
3.2.7 BlockManagerMaster介绍35
3.2.8 创建块管理器BlockManager36
3.2.9 创建广播管理器Broadcast-Manager36
3.2.10 创建缓存管理器CacheManager37
3.2.11 HTTP文件服务器HttpFile-Server37
3.2.12 创建测量系统MetricsSystem39
3.2.13 创建SparkEnv40
3.3 创建metadataCleaner41
3.4 SparkUI详解42
3.4.1 listenerBus详解43
3.4.2 构造JobProgressListener46
3.4.3 SparkUI的创建与初始化47
3.4.4 Spark UI的页面布局与展示49
3.4.5 SparkUI的启动54
3.5 Hadoop相关配置及Executor环境变量54
3.5.1 Hadoop相关配置信息54
3.5.2 Executor环境变量54
3.6 创建任务调度器TaskScheduler55
3.6.1 创建TaskSchedulerImpl55
3.6.2 TaskSchedulerImpl的初始化57
3.7 创建和启动DAGScheduler57
3.8 TaskScheduler的启动60
3.8.1 创建LocalActor60
3.8.2 ExecutorSource的创建与注册62
3.8.3 ExecutorActor的构建与注册64
3.8.4 Spark自身ClassLoader的创建64
3.8.5 启动Executor的心跳线程66
3.9 启动测量系统MetricsSystem69
3.9.1 注册Sources70
3.9.2 注册Sinks70
3.9.3 给Sinks增加Jetty的Servlet-ContextHandler71
3.10 创建和启动ExecutorAllocation-Manager72
3.11 ContextCleaner的创建与启动73
3.12 Spark环境更新74
3.13 创建DAGSchedulerSource和BlockManagerSource76
3.14 将SparkContext标记为激活77
3.15 小结78
第4章 存储体系79
4.1 存储体系概述79
4.1.1 块管理器BlockManager的实现79
4.1.2 Spark存储体系架构81
4.2 shuffle服务与客户端83
4.2.1 Block的RPC服务84
4.2.2 构造传输上下文Transpor-tContext85
4.2.3 RPC客户端工厂Transport-ClientFactory86
4.2.4 Netty服务器TransportServer87
4.2.5 获取远程shuffle文件88
4.2.6 上传shuffle文件89
4.3 BlockManagerMaster对Block-Manager的管理90
4.3.1 BlockManagerMasterActor90
4.3.2 询问Driver并获取回复方法92
4.3.3 向BlockManagerMaster注册BlockManagerId93
4.4 磁盘块管理器DiskBlockManager94
4.4.1 DiskBlockManager的构造过程94
4.4.2 获取磁盘文件方法getFile96
4.4.3 创建临时Block方法create-TempShuffleBlock96
4.5 磁盘存储DiskStore97
4.5.1 NIO读取方法getBytes97
4.5.2 NIO写入方法putBytes98
4.5.3 数组写入方法putArray98
4.5.4 Iterator写入方法putIterator98
4.6 内存存储MemoryStore99
4.6.1 数据存储方法putBytes101
4.6.2 Iterator写入方法putIterator详解101
4.6.3 安全展开方法unrollSafely102
4.6.4 确认空闲内存方法ensureFreeSpace105
4.6.5 内存写入方法putArray107
4.6.6 尝试写入内存方法tryToPut108
4.6.7 获取内存数据方法getBytes109
4.6.8 获取数据方法getValues110
4.7 Tachyon存储TachyonStore110
4.7.1 Tachyon简介111
4.7.2 TachyonStore的使用112
4.7.3 写入Tachyon内存的方法putIntoTachyonStore113
4.7.4 获取序列化数据方法getBytes113
4.8 块管理器BlockManager114
4.8.1 移出内存方法dropFrom-Memory114
4.8.2 状态报告方法reportBlockStatus116
4.8.3 单对象块写入方法putSingle117
4.8.4 序列化字节块写入方法putBytes118
4.8.5 数据写入方法doPut118
4.8.6 数据块备份方法replicate121
4.8.7 创建DiskBlockObjectWriter的方法getDiskWriter125
4.8.8 获取本地Block数据方法getBlockData125
4.8.9 获取本地shuffle数据方法doGetLocal126
4.8.10 获取远程Block数据方法doGetRemote127
4.8.11 获取Block数据方法get128
4.8.12 数据流序列化方法dataSerializeStream129
4.9 metadataCleaner和broadcastCleaner129
4.10 缓存管理器CacheManager130
4.11 压缩算法133
4.12 磁盘写入实现DiskBlockObjectWriter133
4.13 块索引shuffle管理器IndexShuffleBlockManager135
4.14 shuffle内存管理器ShuffleMemoryManager137
4.15 小结138
第5章 任务提交与执行139
5.1 任务概述139
5.2 广播Hadoop的配置信息142
5.3 RDD转换及DAG构建144
5.3.1 为什么需要RDD144
5.3.2 RDD实现分析146
5.4 任务提交152
5.4.1 任务提交的准备152
5.4.2 finalStage的创建与Stage的划分157
5.4.3 创建Job163
5.4.4 提交Stage164
5.4.5 提交Task165
5.5 执行任务176
5.5.1 状态更新176
5.5.2 任务还原177
5.5.3 任务运行178
5.6 任务执行后续处理179
5.6.1 计量统计与执行结果序列化179
5.6.2 内存回收180
5.6.3 执行结果处理181
5.7 小结187
第6章 计算引擎188
6.1 迭代计算188
6.2 什么是shuffle192
6.3 map端计算结果缓存处理194
6.3.1 map端计算结果缓存聚合195
6.3.2 map端计算结果简单缓存200
6.3.3 容量限制201
6.4 map端计算结果持久化204
6.4.1 溢出分区文件205
6.4.2排序与分区分组207
6.4.3 分区索引文件209
6.5 reduce端读取中间计算结果210
6.5.1 获取map任务状态213
6.5.2 划分本地与远程Block215
6.5.3 获取远程Block217
6.5.4 获取本地Block218
6.6 reduce端计算219
6.6.1 如何同时处理多个map任务的中间结果219
6.6.2 reduce端在缓存中对中间计算结果执行聚合和排序220
6.7 map端与reduce端组合分析221
6.7.1 在map端溢出分区文件,在reduce端合并组合221
6.7.2 在map端简单缓存、排序分组,在reduce端合并组合222
6.7.3 在map端缓存中聚合、排序分组,在reduce端组合222
6.8 小结223
第7章 部署模式224
7.1 local部署模式225
7.2 local-cluster部署模式225
7.2.1 LocalSparkCluster的启动226
7.2.2 CoarseGrainedSchedulerBackend的启动236
7.2.3 启动AppClient237
7.2.4 资源调度242
7.2.5 local-cluster模式的任务执行253
7.3 Standalone部署模式255
7.3.1 启动Standalone模式255
7.3.2 启动Master分析257
7.3.3 启动Worker分析259
7.3.4 启动Driver Application分析261
7.3.5 Standalone模式的任务执行263
7.3.6 资源回收263
7.4 容错机制266
7.4.1 Executor异常退出266
7.4.2 Worker异常退出268
7.4.3 Master异常退出269
7.5 其他部署方案276
7.5.1 YARN277
7.5.2 Mesos280
7.6 小结282
扩 展 篇
第8章 Spark SQL284
8.1 Spark SQL总体设计284
8.1.1 传统关系型数据库SQL运行原理285
8.1.2 Spark SQL运行架构286
8.2 字典表Catalog288
8.3 Tree和TreeNode289
8.4 词法解析器Parser的设计与实现293
8.4.1 SQL语句解析的入口294
8.4.2 建表语句解析器DDLParser295
8.4.3 SQL语句解析器SqlParser296
8.4.4 Spark代理解析器SparkSQLParser299
8.5 Rule和RuleExecutor300
8.6 Analyzer与Optimizer的设计与实现302
8.6.1 语法分析器Analyzer304
8.6.2 优化器Optimizer305
8.7 生成物理执行计划306
8.8 执行物理执行计划308
8.9 Hive311
8.9.1 Hive SQL语法解析器311
8.9.2 Hive SQL元数据分析313
8.9.3 Hive SQL物理执行计划314
8.10 应用举例:JavaSparkSQL314
8.11 小结320
第9章 流式计算321
9.1 Spark Streaming总体设计321
9.2 StreamingContext初始化323
9.3 输入流接收器规范Receiver324
9.4 数据流抽象DStream325
9.4.1 Dstream的离散化326
9.4.2 数据源输入流InputDStream327
9.4.3 Dstream转换及构建DStream Graph329
9.5 流式计算执行过程分析330
9.5.1 流式计算例子CustomReceiver331
9.5.2 Spark Streaming执行环境构建335
9.5.3 任务生
— 没有更多了 —
以下为对购买帮助不大的评价