• 智能控制基础
图书条目标准图
21年品牌 40万+商家 超1.5亿件商品

智能控制基础

23.4 6.7折 35 九五品

仅1件

河北廊坊
认证卖家担保交易快速发货售后保障

作者韦巍、何衍 著

出版社清华大学出版社

出版时间2008-11

版次1

装帧平装

货号A1

上书时间2024-12-28

   商品详情   

品相描述:九五品
图书标准信息
  • 作者 韦巍、何衍 著
  • 出版社 清华大学出版社
  • 出版时间 2008-11
  • 版次 1
  • ISBN 9787302169185
  • 定价 35.00元
  • 装帧 平装
  • 开本 16开
  • 纸张 胶版纸
  • 页数 347页
  • 字数 460千字
  • 正文语种 简体中文
  • 丛书 全国高等学校自动化专业系列教材?教育部高等学校自动化专业教学指导分委员会牵头规划?普通高等教育“十一五”国家级规划教材
【内容简介】
  智能控制作为一门新兴学科,它的发展得益于许多学科,如人工智能、认知科学、现代控制理论、模糊数学、生物控制论、学习理论以及网络理论等。本书总结近20年来智能控制的研究成果,详细论述智能控制的基本概念、工作原理和设计方法。本书的主要内容包括:智能控制概论、模糊控制论、人工神经网络控制论、专家控制、分层递阶智能控制、学习控制、模糊神经网络控制与自适应神经网络、进化算法、多智能体系统控制。本书在深入系统介绍智能控制设计理论和应用方法的同时,结合课堂教学给出了大量的设计例子和习题。
  本书选材新颖,系统性强,通俗易懂,突出理论联系实际。既适合初学者学习智能控制的基本理论和方法,又对智能控制的研究学者有一定的参考价值。本书标注了部分拓展内容的章节,供深入研究者参考。整本教材主要针对控制科学与工程、电气工程等学科硕士研究生和自动化专业高年级本科生使用,也适合其他专业的工程师阅读和参考。
【作者简介】
  韦巍,1964年生。1983年浙江大学本科毕业,1994年获博士学位。1993年和1998年分别获ALCS和DFG资助,赴英国Reading大学和德国Bochum大学联合研究。现为浙江大学电气学院副院长,博士生导师。目前主要从事智能控制与智能系统理论及应用研究,包括智机器人。曾获浙江省科技进步二等奖1项、教育部科技进步三等奖1项和浙江省优秀教学成果奖1项。已发表学术论文近百篇,其中SCI、EI收录论文50余篇。
  何衍,浙江金华人,1973年生。1995年、4998年于浙江工业大学获自动化专业学士、硕士学位,2001年于浙江大学获控制理论与控制工程专业博士学位。现为浙江大学系统科学与工程学系副教授、硕士生导师。主要从事信息融合、机器人、知识工程、运筹学等方面的科研和教学工作。负责、参加国家自然科学基金等科研项目多项。
【目录】

第1章绪论
1.1智能控制的发展
1.1.1智能控制问题的提出
1.1.2智能控制的发展
1.2智能控制的几个主要分支
1.2.1基于知识的专家系统
1.2.2模糊控制
1.2.3神经元网络控制
1.2.4学习控制
1.3智能控制系统的构成原理
1.3.1智能控制系统结构
1.3.2智能控制系统的特点
1.3.3智能控制系统研究的主要数学工具
习题和思考题
第2章模糊控制论
2.1引言
2.2模糊集合论基础
2.2.1模糊集的概念
2.2.2模糊集合的运算
2.2.3模糊集合运算的基本性质
2.2.4隶属度函数的建立
2.2.5模糊关系
2.3模糊逻辑、模糊逻辑推理和合成
2.3.1二值逻辑
2.3.2模糊逻辑的基本运算
2.3.3模糊语言逻辑
2.3.4模糊逻辑推理
2.3.5模糊关系方程的解
2.4模糊控制系统的组成
2.4.1模糊化过程
2.4.2知识库
2.4.3决策逻辑
2.4.4精确化过程
2.5模糊控制系统的设计
2.5.1模糊控制器的结构设计
2.5.2模糊控制器的基本类型
2.5.3模糊控制器的设计原则
2.5.4模糊控制器的常规设计方法
2.6模糊PID控制器
2.6.1模糊控制器和常规PID的混合结构
2.6.2常规PID参数的模糊自整定技术
2.7模糊控制器的应用
2.7.1流量控制的模糊控制器设计
2.7.2倒立摆的模糊控制
习题和思考题
第3章人工神经元网络控制论
3.1引言
3.1.1神经元模型
3.1.2神经网络的模型分类
3.1.3神经网络的学习算法

3.1.4神经网络的泛化能力
3.2前向神经网络模型
3.2.1多层神经网络结构
3.2.2多层传播网络的BP学习算法
3.2.3快速的BP改进算法
3.2.4BP学习算法的MATLAB例程
3.3动态神经网络模型
3.3.1带时滞的多层感知器网络
3.3.2Hopfield神经网络
3.3.3回归神经网络
3.4CMAC神经网络
3.4.1小脑网络的感知器模型
3.4.2CMAC的映射原理
3.4.3CMAC网络的学习算法
3.5RBF神经网络模型
3.5.1具有固定中心的RBF神经网络的训练
3.5.2径向基神经网络训练的随机梯度逼近法
3.6神经网络控制基础
3.6.1引言
3.6.2神经网络的逼近能力
3.7非线性动态系统的神经网络辨识
3.7.1神经网络的辨识基础
3.7.2神经网络辨识模型的结构
3.7.3非线性动态系统的神经网络辨识
3.8神经网络控制的学习机制
3.8.1监督式学习
3.8.2增强式学习
3.9神经网络控制器的设计
3.9.1神经网络直接逆模型控制法
3.9.2直接网络控制法
3.9.3多神经网络自学习控制法
3.10单一神经元控制
习题和思考题
第4章专家控制
4.1引言
4.2专家控制的基本原理
4.2.1专家控制系统的基本内容
4.2.2知识表达
4.2.3知识推理
4.2.4专家控制系统的设计
4.3专家控制应用举例
4.3.1PID专家控制系统设计
4.3.2过程专家控制系统
4.4仿人智能控制
4.4.1仿人智能控制的引入
4.4.2仿人智能控制的基本概念
4.4.3仿人智能控制的实现
4.4.4仿人智能控制的应用举例
习题和思考题
上机实验题
第5章分层递阶智能控制
5.1引言
5.2递阶智能控制的基本原理
5.3递阶智能控制的组织和协调
5.3.1递阶智能控制的组织级
5.3.2递阶智能控制的协调级
5.3.3递阶智能控制的执行级
5.4分层递阶智能控制的应用举例
5.4.1智能机器人系统的递阶控制
5.4.2集散递阶智能控制系统
习题和思考题
第6章学习控制
6.1迭代学习控制
6.1.1迭代学习控制的基本思想
6.1.2线性时变系统的迭代学习控制
6.1.3一类非线性动态系统的迭代学习控制
6.1.4多关节机械手的迭代学习控制
6.1.5迭代学习控制面临的挑战
6.2增强学习
6.2.1增强学习的基本思想
6.2.2增强学习的主要算法
6.2.3增强学习在控制中的应用
习题和思考题
上机实验题
第7章模糊神经网络控制与自适应神经网络
7.1模糊神经网络控制
7.1.1神经网络与模糊控制系统
7.1.2模糊神经网络的学习算法
7.2基于神经元网络的自适应控制
7.2.1神经网络的模型参考自适应控制
7.2.2神经网络的自校正控制
7.3自适应神经网络结构学习
7.3.1神经网络结构设计准则
7.3.2神经网络结构设计方法
第8章进化算法
8.1引言
8.2遗传学习原理与算法
8.2.1遗传学习的基本思想
8.2.2遗传学习算法的理论基础
8.2.3遗传学习算法的改良
8.2.4遗传学习算法的应用
8.3人工免疫进化算法
8.3.1免疫系统的基本概念
8.3.2人工免疫进化的引入和算法的提出
习题和思考题
第9章多智能体系统控制
9.1引言
9.1.1多智能体系统的概念
9.1.2多智能体系统的发展
9.2多智能体系统的理论
9.2.1多智能体系统的理论模型
9.2.2多智能体系统的通信
9.2.3多智能体系统的协调与协作
9.3多智能体控制系统
9.3.1基于符号推理的多智能体控制系统
9.3.2基于行为主义的多智能体控制系统
9.3.3基于进化思想的多智能体控制系统
9.4多智能体控制系统的应用举例
9.4.1多机器人控制系统
9.4.2交通管理系统
习题和思考题
上机实验题
参考文献

点击展开 点击收起

—  没有更多了  —

以下为对购买帮助不大的评价

此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP