• 代数拓扑基础教程(英文版)
图书条目标准图
21年品牌 40万+商家 超1.5亿件商品

代数拓扑基础教程(英文版)

42.52 8.5折 50 九五品

仅1件

河北廊坊
认证卖家担保交易快速发货售后保障

作者[美]曼斯 著

出版社世界图书出版公司

出版时间2009-08

版次1

装帧平装

货号A8

上书时间2024-12-13

   商品详情   

品相描述:九五品
图书标准信息
  • 作者 [美]曼斯 著
  • 出版社 世界图书出版公司
  • 出版时间 2009-08
  • 版次 1
  • ISBN 9787510004803
  • 定价 50.00元
  • 装帧 平装
  • 开本 24开
  • 纸张 胶版纸
  • 页数 428页
  • 正文语种 英语
【内容简介】
Thisbookisintendedtoserveasatextbookforacourseinalgebraictopologyatthebeginninggraduatelevel.Themaintopicscoveredaretheclassificationofcompact2-manifolds,thefundamentalgroup,coveringspaces,singularhomologytheory,andsingularcohomologytheory(includingcupproductsandthedualitytheoremsofPoincareandAlexander).ItconsistsofmaterialfromthefirstfivechaptersoftheauthorsearlierbookAlgebraicTopology:AnIntroduction(GTM56)togetherwithalmostallofhisbookSingularHomologyTheory(GTM70).Thismaterialfromthetwoearlierbookshasbeenrevised,corrected,andbroughtuptodate.Thereisenoughhereforafull-yearcourse.
Theauthorhastriedtogiveastraightforwardtreatmentofthesubjectmatter,strippedofallunnecessarydefinitions,terminology,andtechnicalmachinery.Hehasalsotried,whereverfeasible,toemphasizethegeometricmotivationbehindthevariousconcepts.Severalapplicationsofthemethodsofalgebraictopologytoconcretegeometrical-topologicalproblemsaregiven(e.g.,Brouwerfixedpointtheorem,Brouwer-Jordanseparationtheorem,lnvarianceofDomain.Borsuk-UlamtheoremS.
【目录】
Preface
NotationandTerminology
CHAPTERⅠ
Two-DimensionalManifolds
1.Introduction
2.DefinitionandExamplesofn-Manifolds
3.Orientablevs.NonorientableManifolds
4.ExamplesofCompact,Connected2-Manifolds
5.StatementoftheClassificationTheoremforCompactSurfaces
6.TriangulationsofCompactSurfaces
7.ProofofTheorem5.1
8.TheEulerCharacteristicofaSurface
References

CHAPTERⅡTheFundamentalGroup
1.Introduction
2.BasicNotationandTerminology
3.DefinitionoftheFundamentalGroupofaSpace
4.TheEffectofaContinuousMappingontheFundamentalGroup
5.TheFundamentalGroupofaCircleISInfiniteCyclic
6.Application:TheBrouwerFixed-PointTheoreminDimension2
7.TheFundamentalGroupofaProductSpace
8.HomotopyTypeandHomotopyEquivalenceofSpaces
References

CHAPTERⅢFreeGroupsandFreeProductsofGroups
1.Introduction
2.TheWeakProductofAbelianGroups
3.FreeAbelianGroups
4.FreeProductsofGroups
5.FreeGroups
6.ThePresentationofGroupsbyGeneratorsandRelations
7.UniversalMappingProblems
References

CHAPTERⅣSeifertandVanKampenTheoremontheFundamentalGroupoftheUnionofTwoSpaces.Applications
1.Introduction
2.StatementandProofoftheTheoremofSeifertandVanKampen
3.FirstApplicationofTheorem2.1
4.SecondApplicationofTheorem2.1
5.StructureoftheFundamentalGroupofaCompactSurface
6.ApplicationtoKnotTheory
7.ProofofLemma2.4
References

CHAPTERⅤCoveringSpaces
1.Introduction
2.DefinitionandSomeExamplesofCoveringSpaces
3.LiftingofPathstoaCoveringSpace
4.TheFundamentalGroupofaCoveringSpace
5.LiftingofArbitraryMapstoaCoveringSpace
6.HomomorphismsandAutomorphismsofCoveringSpaces
10.TheExistenceTheoremforCoveringSpacesReferences

CHAPTERⅥ
BackgroundandMotivationforHomologyTheory
1.Introduction
2.SummaryofSomeoftheBasicPropertiesofHomologyTheory
3.SomeExamplesofProblemswhichMotivatedtheDevelopmentofHomologyTheoryintheNineteenthCenturyReferences

CHAPTERⅦ
DefinitionsandBasicPropertiesofHomologyTheory
1.Introduction
2.DefinitionofCubicalSingularHomologyGroups
3.TheHomomorphismInducedbyaContinuousMap
4.TheHomotopyPropertyoftheInducedHomomorphisms
5.TheExactHomologySequenceofaPair
6.TheMainPropertiesofRelativeHomologyGroups
7.TheSubdivisionofSingularCubesandtheProofofTheorem6.4

CHAPTERⅧ
DeterminationoftheHomologyGroupsofCertainSpaces:
ApplicationsandFurtherPropertiesofHomologyTheory
1.Introduction
2.HomologyGroupsofCellsandSpheres——Applications
3.HomologyofFiniteGraphs
4.HomologyofCompactSurfaces
5.TheMayer-VietorisExactSequence
6.TheJordan-BrouwerSeparationTheoremandlnvarianceofDomain
7.TheRelationbetweentheFundamentalGroupandtheFirstHomologyGroup
References

CHAPTERⅨ
HomologyofCW-Complexes
1.Introduction
2.AdjoiningCellstoaSpace
3.CW-Complexes
4.TheHomologyGroupsofaCW-Complex
5.IncidenceNumbersandOrientationsofCells
6.RegularCW-Complexes
7.DeterminationofIncidenceNumbersforaRegularCellComplex
8.HomologyGroupsofaPseudomanifoldReferences

CHAPTERⅩ
HomologywithArbitraryCoefficientGroups
1.Introduction
2.ChainComplexes
3.DefinitionandBasicPropertiesofHomologywithArbitraryCoefficients
4.IntuitiveGeometricPictureofaCyclewithCoefficientsinG
5.CoefficientHomomorphismsandCoefficientExactSequences
6.TheUniversalCoefficientTheorem
7.FurtherPropertiesofHomologywithArbitraryCoefficientsReferences

CHAPTERⅪ
TheHomologyofProductSpaces
1.Introduction
2.TheProductofCW-ComplexesandtheTensorProductofChainComplexes
3.TheSingularChainComplexofaProductSpace
4.TheHomologyoftheTensorProductofChainComplexes(TheKiinnethTheorem)
5.ProofoftheEilenberg-ZilberTheorem
6.FormulasfortheHomologyGroupsofProductSpacesReferences
点击展开 点击收起

—  没有更多了  —

以下为对购买帮助不大的评价

此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP