数学研究生教材:伽罗瓦理论
¥
34.36
九五品
仅1件
作者[美]爱德华滋 著
出版社世界图书出版公司
出版时间2010-09
版次1
装帧平装
货号A5
上书时间2024-12-09
商品详情
- 品相描述:九五品
图书标准信息
-
作者
[美]爱德华滋 著
-
出版社
世界图书出版公司
-
出版时间
2010-09
-
版次
1
-
ISBN
9787510027420
-
定价
29.00元
-
装帧
平装
-
开本
24开
-
纸张
胶版纸
-
页数
152页
-
正文语种
英语
- 【内容简介】
-
ThisexpositionofGaloistheorywasoriginallygoingtobeChapterIofthecontinuationofmybookFerrnatsLastTheorem,butitsoonoutgrewanyreasonableboundsforanintroductorychapter,andIdecidedtomakeitaseparatebook.However,thisdecisionwaspromptedbymorethanjustthelength.Followingthepreceptsofmysermon"ReadtheMasters!"[E2],ImadethereadingofGaloisoriginalmemoiramajorpartofmystudyofGaloistheory,andIsawthatthemoderntreatmentsofGaloistheorylackedmuchofthesimplicityandclarityoftheoriginal.ThereforeIwantedtowriteaboutthetheoryinawaythatwouldnotonlyexplainit,butexplainitintermscloseenoughtoGaloisowntomakehismemoiraccessibletothereader,inthesamewaythatItriedtomakeRiemannsmemoironthezetafunctionandKummerspapersonFermatsLastTheoremaccessibleinmyearlierbooks,[Eliand[E3].ClearlyIcouldnotdothiswithintheconfinesofoneexpositorychapter
- 【目录】
-
Acknowledgments
1.Galois2.InfluenceofLagrange3.Quadraticequations4.1700B.c.toA.D.15005.Solutionofcubic6.Solutionofquartic7.Impossibilityofquintic8.Newton9.Symmetricpolynomialsinroots10.Fundamentaltheoremonsymmetricpolynomials11.Proof12.Newtonstheorem13.Discriminants
FirstExerciseSet13
14.Solutionofcubic15.LagrangeandVandermonde16.Lagrangeresolvents17.Solutionofquarticagain18.Attemptatquintic19.LagrangesRdflexions
SecondExerciseSet22
20.Cyclotomicequations21.Thecasesn=3,522.n=7,1123.Generalcase24.Twolemmas25.Gausssmethod26.p-gonsbyrulerandcompass27.SummaryThirdExerciseSet31
28.Resolvents29.Lagrangestheorem30.Proof31.Galoisresolvents32.ExistenceofGaloisresolvents33.RepresentationofthesplittingfieldasK(t)34.Simplealgebraicextensions35.Euclideanalgorithm36.Constructionofsimplealgebraicextensions37.Galoismethod
FourthExerciseSet45
38.Review39.Finitepermutationgroups40.Subgroups,normalsubgroups41.TheGaloisgroupofanequation42.Examples
FifthExerciseSet56
3.Solvabilitybyradicals44.ReductionoftheGaloisgroupbyacyclicextension5.Solvablegroups46.Reductiontoanormalsubgroupofindexp47.Theoremonsolutionbyradicals(assumingrootsofunity)48.Summary
SixthExerciseSet65
49.Splittingfields50.Fundamentaltheoremofalgebra(so-called)51.
Constructionofasplittingfield52.Needforafactorizationmethod53.Threetheoremsonfactorizationmethods54.Uniquenessoffactorizationofpolynomials55.Factorizationover56.Over57.Gaussslemma,factorizationover58.Overtranscendentalextensions59.
Ofpolynomialsintwovariables60.Overalgebraicextensions61.Finalremarks
SeventhExerciseSet81
62.ReviewofGaloistheory63.FundamentaltheoremofGaloistheory(so-called)64.Galoisgroupofxp-1=0over65.Solvabilityofthecyclotomicequation6.Theoremonsolutionbyradicals67.Equationswithliteralcoefficients68.Equationsofprimedegree69.
Galoisgroupofxn-1=0over70.Proofofthemainproposition71.DeductionofLemma2of24
EighthExerciseSet97
Appendix1.MemoirontheConditionsforSolvabilityofEquationsbyRadicals,byEvaristeGalois
Appendix2.Synopsis
Appendix3.Groups
AnswerstoExercises
ListofExercises
References
Index
点击展开
点击收起
— 没有更多了 —
以下为对购买帮助不大的评价