黎曼几何和几何分析(第6版)
¥
50
5.1折
¥
99
八五品
仅1件
作者[德]约斯特(Jost J.) 著
出版社世界图书出版公司
出版时间2015-01
版次6
装帧平装
货号J-C10-5
上书时间2024-07-27
商品详情
- 品相描述:八五品
-
瑕疵见图末
图书标准信息
-
作者
[德]约斯特(Jost J.) 著
-
出版社
世界图书出版公司
-
出版时间
2015-01
-
版次
6
-
ISBN
9787510084447
-
定价
99.00元
-
装帧
平装
-
开本
24开
-
纸张
胶版纸
-
页数
611页
-
正文语种
英语
- 【内容简介】
-
Riemanniangeometryischaracterized,andresearchisorientedtowardsandshapedbyconcepts(geodesics,connections,curvature,...)andobjectives,inparticulartounderstandcertainclassesof(compact)Riemannianmanifoldsdefinedbycurvatureconditions(constantorpositiveornegativecurvature,...).Bywayofcontrast,geometricanalysisisaperhapssomewhatlesssystematiccollectionoftechniques,forsolvingextremalproblemsnaturallyarisingingeometryandforinvestigatingandcharacterizingtheirsolutions.Itturnsoutthatthetwofieldscomplementeachotherverywell;geometricanalysisofferstoolsforsolvingdifficultproblemsingeometry,andRiemanniangeometrystimulatesprogressingeometricanalysisbysettingambitiousgoals.
ItistheaimofthisbooktobeasystematicandcomprehensiveintroductiontoRiemanniangeometryandarepresentativeintroductiontothemethodsofgeometricanalysis.ItattemptsasynthesisofgeometricandanalyticmethodsinthestudyofRiemannianmanifolds.
ThepresentworkisthesixtheditionofmytextbookonRiemanniangeometryandgeometricanalysis.IthasdevelopedonthebasisofseveralgraduatecoursesItaughtattheRuhr~UniversityBochumandtheUniversityofLeipzig.ThemainnewfeatureofthepresenteditionisasystematicpresentationofthespectrumoftheLaplaceoperatoranditsrelationwiththegeometryoftheunderlyingRiemannianmarufold.Naturally,Ihavealsoincludedseveralsmalleradditionsandminorcorrections(forwhichIamgratefultoseveralreaders).Moreover,theorganizationofthechaptershasbeensystematicallyrearranged.
- 【目录】
-
1RiemannianManifolds
1.1ManifoldsandDifferentiableManifolds
1.2TangentSpaces
1.3Submanifolds
1.4RiemannianMetrics
1.5ExistenceofGeodesicsonCompactManifolds
1.6TheHeatFlowandtheExistenceofGeodesics
1.7ExistenceofGeodesicsonCompleteManifolds
ExercisesforChapter1
2LieGroupsandVectorBundles
2.1VectorBundles
2.2IntegralCurvesofVectorFields.LieAlgebras
2.3LieGroups
2.4SpinStructures
ExercisesforChapter2
3TheLaplaceOperatorandHarmonicDifferentialForms
3.1TheLaplaceOperatoronFunctions
3.2TheSpectrumoftheLaplaceOperator
3.3TheLaplaceOperatoronForms
3.4RepresentingCohomologyClassesbyHarmonicForms
3.5Generalizations
3.6TheHeatFlowandHarmonicForms
ExercisesforChapter3
4ConnectionsandCurvature
4.1ConnectionsinVectorBundles
4.2MetricConnections.TheYang—MillsFunctional
4.3TheLevi—CivitaConnection
4.4ConnectionsforSpinStructuresandtheDiracOperator
4.5TheBochnerMethod
4.6EigenvalueEstimatesbytheMethodofLi—Yau
4.7TheGeometryofSubmanifolds
4.8MinimalSubmanifolds
ExercisesforChapter4
5GeodesicsandJacobiFields
5.1FirstandsecondVariationofArcLengthandEnergy
5.2JacobiFields
5.3ConjugatePointsandDistanceMinimizingGeodesics
5.4RiemannianManifoldsofConstantCurvature
5.5TheRauchComparisonTheoremsandOtherJacobiFieldEstimates
5.6GeometricApplicationsofJacobiFieldEstimates
5.7ApproximateFundamentalSolutionsandRepresentationFormulas
5.8TheGeometryofManifoldsofNonpositiveSectionalCurvature
ExercisesforChapter5
AShortSurveyonCurvatureandTopology
6SymmetricSpacesandKahlerManifolds
6.1ComplexProjectiveSpace
6.2KahlerManifolds
6.3TheGeometryofSymmetricSpaces
6.4SomeResultsabouttheStructureofSymmetricSpaces
6.5TheSpaceSl(n,IR)/SO(n,IR)
6.6SymmetricSpacesofNoncompactType
ExercisesforChapter6
7MorseTheoryandFloerHomology
7.1Preliminaries:AimsofMorseTheory
7.2ThePalais—SmaleCondition,ExistenceofSaddlePoints
7.3LocalAnalysis
7.4LimitsofTrajectoriesoftheGradientFlow
7.5FloerCondition,TransversalityandZ2—Cohomology
7.6OrientationsandZ—homology
7.7Homotopies
7.8Graphflows
7.9Orientations
7.10TheMorseInequalities
7.11ThePalais—SmaleConditionandtheExistenceofClosedGeodesics
ExercisesforChapter7
8HarmonicMapsbetweenRiemannianManifolds
8.1Definitions
8.2FormulasforHarmonicMaps.TheBochnerTechnique
8.3TheEnergyIntegralandWeaklyHarmonicMaps
8.4HigherRegularity
8.5ExistenceofHarmonicMapsforNonpositiveCurvature
8.6RegularityofHarmonicMapsforNonpositiveCurvature
8.7HarmonicMapUniquenessandApplications
ExercisesforChapter8
9HarmonicMapsfromRiemannSurfaces
9.1Two—dimensionalHarmonicMappings
9.2TheExistenceofHarmonicMapsinTwoDimensions
9.3RegularityResults
ExercisesforChapter9
10VariationalProblemsfromQuantumFieldTheory
10.1TheGinzburg—LandauFunctional
10.2TheSeiberg—WittenFunctional
10.3Dirac—harmonicMaps
ExercisesforChapter10
ALinearEllipticPartialDifferentialEquations
A.1SobolevSpaces
A.2LinearEllipticEquations
A.3LinearParabolicEquations
BFundamentalGroupsandCoveringSpaces
Bibliography
Index
点击展开
点击收起
— 没有更多了 —
瑕疵见图末
以下为对购买帮助不大的评价