O\'Reilly: TensorFlow速查手册
全新正版未拆封
¥
27.88
3.6折
¥
78
全新
库存2件
作者苏钰涵 译;[美]KC·董(KC Tung)
出版社中国电力出版社
出版时间2022-10
版次1
装帧其他
上书时间2022-11-21
商品详情
- 品相描述:全新
图书标准信息
-
作者
苏钰涵 译;[美]KC·董(KC Tung)
-
出版社
中国电力出版社
-
出版时间
2022-10
-
版次
1
-
ISBN
9787519869717
-
定价
78.00元
-
装帧
其他
-
开本
16开
-
纸张
胶版纸
-
页数
248页
-
字数
317.000千字
- 【内容简介】
-
理解TensorFlow模型模式和ML工作流中的最佳实践。
使用代码段作为构建TensorFlow模型和工作流的模板。
通过集成TensorFlow Hub中的预建模型节省开发时间。
使用加速器集群(如GPU或TPU)充分利用分布式训练。
对数据摄取、训练模型、模型保存和推理做出明智的设计选择。
- 【作者简介】
-
KC Tung 是微软的云解决方案架构师,擅长在企业云架构中设计和交付机器学习和AI 解决方案。他帮助企业客户使用用例驱动的架构,在云中完成 AI/ML 模型开发和部署,以及选择最适合其需求的技术和集成方案。他是微软认证的人工智能工程师和数据工程师,拥有得克萨斯大学西南医学院的分子生物物理学博士学位。
- 【目录】
-
目录
前言 . 1
第1 章 TensorFlow 2 简介 . 7
1.1 TensorFlow 2 的改进 8
1.1.1 Keras API .8
1.1.2 TensorFlow 中的可重用模型 9
1.2 简化常用操作 10
1.2.1 开源数据 10
1.2.2 使用分布式数据集 10
1.2.3 数据流式处理 11
1.2.4 数据工程 11
1.2.5 迁移学习 12
1.2.6 模型风格 12
1.2.7 监视训练过程 12
1.2.8 分布式训练 13
1.2.9 提供TensorFlow 模型服务 13
1.2.10 改善训练体验 13
1.3 总结 14
第2 章 数据存储和摄取 15
2.1 使用Python 生成器流式处理数据 16
2.2 使用生成器流式处理文件内容 .18
2.3 JSON 数据结构 .21
2.4 建立文件名模式 22
2.5 将一个CSV 文件划分为多个CSV 文件23
2.6 使用tf.io 创建文件模式对象 .24
2.7 创建流式数据集对象 .25
2.8 流式处理CSV 数据集 28
2.9 组织图像数据 29
2.10 使用TensorFlow 图像生成器31
2.11 流式处理交叉验证图像33
2.12 查看调整大小后的图像 .34
2.13 总结 .36
第3 章 数据预处理 . 39
3.1 准备表格数据进行训练 39
3.1.1 标记列 .41
3.1.2 将列交互编码为可能的特征 46
3.1.3 创建交叉验证数据集48
3.1.4 开始模型训练过程 49
3.1.5 小结 50
3.2 准备图像数据进行处理 51
3.2.1 将图像转换为固定大小 55
3.2.2 训练模型 58
3.2.3 小结 60
3.3 准备文本数据进行处理 60
3.3.1 文本分词 61
3.3.2 创建字典和反转字典65
3.4 总结 67
第4 章 可重用模型元素 69
4.1 基本TensorFlow Hub 工作流 70
4.2 利用迁移学习完成图像分类 74
4.2.1 模型需求 74
4.2.2 数据转换和输入处理75
4.2.3 利用TensorFlow Hub 实现模型 .77
4.2.4 定义输出 78
4.2.5 输出映射到纯文本格式 79
4.2.6 评估:创建一个混淆矩阵 .81
4.2.7 小结 83
4.3 使用tf.keras.applications 模块获得预训练模型 83
4.3.1 利用tf.keras.applications 实现模型 83
4.3.2 微调tf.keras.applications 的模型 85
4.4 总结 86
第5 章 流式摄取数据管道 89
5.1 使用text_dataset_from_directory 函数流式处理文本文件 .90
5.1.1 下载文本数据并建立字典 .90
5.1.2 创建数据管道 92
5.1.3 检查数据集 93
5.1.4 小结 94
5.2 使用flow_from_dataframe 方法利用文件列表流式处理图像 94
5.2.1 下载图像并创建目录95
5.2.2 创建数据摄取管道 96
5.2.3 检查数据集 99
5.2.4 构建和训练tf.keras 模型 .100
5.3 使用from_tensor_slices 方法流式处理NumPy 数组 101
5.3.1 加载示例数据和库 .102
5.3.2 检查NumPy 数组 103
5.3.3 为NumPy 数据建立输入管道 104
5.4 总结 .106
第6 章 模型创建风格 107
6.1 使用符号式API .108
6.1.1 加载CIFAR-10 图像 .108
6.1.2 检查标签分布 110
6.1.3 检查图像 . 111
6.1.4 构建数据管道 113
6.1.5 批处理数据集进行训练 114
6.1.6 构建模型 . 115
6.2 理解继承 118
6.3 使用命令式API .121
6.4 选择API 124
6.5 使用内置训练循环 125
6.6 创建和使用自定义训练循环 126
6.6.1 创建循环的元素 126
6.6.2 在自定义训练循环中集成所有元素 128
6.7 总结 .130
第7 章 监视训练过程 133
7.1 回调对象 134
7.1.1 ModelCheckpoint 134
7.1.2 EarlyStopping 142
7.1.3 小结 144
7.2 TensorBoard .144
7.2.1 由本地Jupyter Notebook 调用TensorBoard 150
7.2.2 由本地命令终端调用TensorBoard .151
7.2.3 由Colab Notebook 调用TensorBoard 151
7.2.4 使用TensorBoard 可视化显示模型过拟合 .152
7.2.5 使用TensorBoard 可视化学习过程 153
7.3 总结 .155
第8 章 分布式训练 157
8.1 数据并行化 158
8.1.1 异步参数服务器 159
8.1.2 同步全归约 160
8.2 使用类tf.distribute.MirroredStrategy 161
8.2.1 创建分布式训练 163
8.2.2 利用tf.distribute.MirroredStrategy 使用GPU 集群 167
8.2.3 小结 173
8.3 Horovod API 173
8.3.1 实现Horovod API 的代码模式 .174
8.3.2 封装模型架构 175
8.3.3 封装数据分离和分片过程 176
8.3.4 工作节点间的参数同步 177
8.3.5 模型检查点回调 178
8.3.6 聚合梯度的分布式优化器 178
8.3.7 使用Horovod API 的分布式训练 179
8.4 总结 .186
第9 章 提供TensorFlow 模型服务. 187
9.1 模型序列化 187
9.1.1 将模型保存为h5 格式 195
9.1.2 将模型保存为pb 格式 196
9.1.3 选择模型格式 198
9.2 TensorFlow Serving .199
9.3 总结 .206
第10 章 改善建模体验:公平性评估和超参数调优 . 207
10.1 模型公平性 208
10.1.1 模型训练和评估 210
10.1.2 公平性评估212
10.1.3 显示Fairness Indicators.214
10.2 超参数调优 221
10.2.1 整数列表作为超参数 222
10.2.2 项选择作为超参数 223
10.2.3 浮点值作为超参数 223
10.3 端到端超参数调优 .223
10.4 总结 231
点击展开
点击收起
— 没有更多了 —
以下为对购买帮助不大的评价