• 数值计算方法
图书条目标准图
21年品牌 40万+商家 超1.5亿件商品

数值计算方法

全新正版未拆封

28.85 5.9折 49 全新

仅1件

四川成都
认证卖家担保交易快速发货售后保障

作者唐旭清 编

出版社科学出版社

出版时间2015-06

版次1

装帧平装

上书时间2024-03-29

转角书檐

四年老店
已实名 已认证 进店 收藏店铺

   商品详情   

品相描述:全新
图书标准信息
  • 作者 唐旭清 编
  • 出版社 科学出版社
  • 出版时间 2015-06
  • 版次 1
  • ISBN 9787030446169
  • 定价 49.00元
  • 装帧 平装
  • 开本 16开
  • 纸张 胶版纸
  • 页数 292页
  • 字数 433千字
【内容简介】

随着计算机的广泛使用和科学技术的迅速发展,科学计算已经成为继理论分析和科学实验之后的第三种重要的科学研究方法。"数值计算方法"是一门介绍各类数学问题的近似求解的最基本、最常用的方法,它既具有数学各专业课程的抽象性和严谨性,又具有解决实际问题的实用性和实验性的技术特征,是理工科相关专业本科生和硕士生的一门重要专业基础课程。《数值计算方法》参照教育部关于"数值计算方法"课程的基本要求为理工科各专业研究生及高年级本科生编写的,其基本内容包括数值代数,数值分析和微分方程数值解法等。同时,利用Matlab应用软件的数值计算和绘图的基本功能,进行各类计算方法的程序构造与实现。结合多年来课堂教学实践,《数值计算方法》力求全面、系统地介绍求各类数学问题近似解得基本方法,重点阐明算法构造的基本思想与原理,以突出教育部"重概念、重方法、重应用、重能力的培养"的精神。

【目录】
第1章绪论
1.1数值计算方法的任务与基本方法
1.2误差及有关概念
1.2.1误差的来源及分类
1.2.2误差的描述
1.3数值计算中的误差传播
1.3.1基本运算中的误差估计
1.3.2算法的数值稳定性
1.4设计算法应注意的问题
1.4.1避免两个相近的数相减
1.4.2绝对值太小的数不宜作除数
1.4.3避免大数“吃”小数的现象
1.4.4简化计算步骤,提高计算效率
本章小结
习题

第2章线性方程组的直接解法
2.1引言
2.2Gauss消去法及计算量
2.2.1Gauss消去法
2.2.2Gauss消去法的计算量
2.3Gauss主元素消去法
2.3.1列主元素法
2.3.2全主元素法
2.4矩阵三角分解及其在解方程组中的应用
2.4.1Gauss消去过程的矩阵表示
2.4.2矩阵的三角分解
2.4.3线性方程组的直接三角分解法
2.4.4解三对角方程组的追赶法
2.5平方根法与改进的平方根法
2.5.1平方根法(Cholesky分解法)
2.5.2改进的平方根法
2.6矩阵、向量和连续函数的范数
2.6.1范数的一般概念
2.6.2连续函数范数
2.6.3向量范数
2.6.4矩阵范数
2.7线性方程组的误差分析
2.7.1线性方程组的性态与条件数
2.7.2线性方程组解的误差估计
2.8应用实例
本章小结
习题

第3章解线性方程组的迭代法
3.1迭代法的基本概念
3.1.1迭代法的一般形式
3.1.2向量序列与矩阵序列的收敛性
3.2几种常用的单步定常线性迭代法
3.2.1Jacobi迭代法
3.2.2Gauss-Seidel迭代法
3.2.3超松弛(SOR)迭代法
3.3迭代法的收敛条件及误差分析
3.3.1迭代法的一般收敛条件
3.3.2几类特殊类型的迭代法收敛性判别
3.3.3简单迭代法的误差估计
3.4最速下降法与共轭梯度法
3.4.1最速下降法
3.4.2共轭梯度法
3.5应用实例
本章小结
习题

第4章矩阵的特征值和特征向量计算
4.1幂法和反幂法
4.1.1幂法
4.1.2幂法的收敛加速
4.1.3反幂法
4.2Jacobi方法
4.3QR方法
4.3.1基本QR方法
4.3.2Householder变换
4.3.3化一般矩阵为拟三角阵
4.3.4拟上三角矩阵的QR分解
4.3.5带原点移位的QR方法——QR加速收敛方法
4.4广义特征值问题的计算方法
4.5应用实例
本章小结
习题

第5章插值法
5.1多项式插值问题的一般描述
5.1.1多项式插值问题
5.1.2插值多项式的误差估计
5.2几种常用插值多项式求法
5.2.1Lagrange插值公式
5.2.2Newton插值公式
5.2.3Hermite插值
5.3分段低次插值
5.3.1分段线性插值
5.3.2分段三次Hermite插值
5.3.3三次样条
5.4应用实例
本章小结
习题

第6章曲线拟合
6.1数据拟合的最小二乘法
6.1.1多项式拟合
6.1.2可化为多项式拟合类型
6.1.3线性最小二乘法的一般形式
6.2正交多项式
6.2.1正交多项式基本概念与性质
6.2.2正交多项式一般方法
6.3函数的最佳平方逼近
6.4应用实例
本章小结
习题

第7章数值微分与数值积分
7.1Newton-Cotes求积公式
7.1.1数值积分的基本思想
7.1.2Newton-Cotes求积公式
7.1.3求积公式的误差估计
7.2复合求积公式
7.2.1复合梯形公式
7.2.2复合Simpson公式
7.2.3复合Cotes公式
7.2.4复合求积公式的逐次分半算法
7.3Romberg求积公式
7.3.1Richardson外推法
7.3.2Romberg求积公式
7.4Gauss型求积公式
7.4.1Gauss型求积公式的一般提法
7.4.2Gauss点与正交多项式的关系
7.4.3Gauss型求积公式的稳定性和收敛性
7.4.4常用Gauss型求积公式
7.4.5Gauss型求积公式余项
7.5数值微分
7.5.1插值型求导公式
7.5.2外推法
7.5.3用三次样条函数求数值导数
7.6应用实例
本章小结
习题

第8章非线性方程和方程组的数值解法
8.1引言
8.1.1问题的背景
8.1.2一元方程的搜索法
8.1.3二分法
8.2一元方程的基本迭代法
8.2.1基本迭代法及其收敛性
8.2.2局部收敛性和收敛阶
8.2.3收敛性的改善——Steffensen迭代法
8.3一元方程Newton迭代法
8.3.1Newton迭代法及其收敛性
8.3.2重根时的Newton迭代改善
8.3.3离散Newton法
8.4非线性方程组的解法
8.4.1不动点的迭代法
8.4.2Newton迭代法
8.4.3最速下降法
8.5应用实例
本章小结
习题

第9章常微分方程数值解法
9.1Euler方法与改进的Euler方法
9.1.1Euler方法
9.1.2Euler方法的误差估计
9.1.3改进的Euler方法
9.2Runge-Kutta法
9.3单步法的稳定性
9.3.1相容性与收敛性
9.3.2稳定性
9.4线性多步法
9.4.1线性多步公式的导出
9.4.2常用的线性多步公式
9.4.3预测一校正系统
9.5一阶微分方程组与高阶方程的数值解法
9.5.1一阶微分方程组的数值解法
9.5.2高阶微分方程的数值解法
9.5.3差分方程解常微分方程边界问题
9.6应用实例
本章小结
习题

第10章瞬时扩散方程的差分解法简介
10.1引言
10.2差分格式建立
10.2.1显式格式
10.2.2隐式格式
10.2.3Crank-Nicolson格式
10.3局部截断误差与收敛性
10.3.1局部截断误差
10.3.2差分格式的收敛性
10.4应用实例
习题
参考文献
附录Matlab软件简介
点击展开 点击收起

   相关推荐   

—  没有更多了  —

以下为对购买帮助不大的评价

此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP