Introduction to Complex Networks:Models, Structures and Dynamics
下午5点前订单,当日发货!超时赔付
¥
25.44
3.2折
¥
79
九五品
仅1件
作者陈关荣、汪小帆、李翔 著
出版社高等教育出版社
出版时间2015-01
版次2
装帧精装
货号9787040406054503
上书时间2024-11-11
商品详情
- 品相描述:九五品
图书标准信息
-
作者
陈关荣、汪小帆、李翔 著
-
出版社
高等教育出版社
-
出版时间
2015-01
-
版次
2
-
ISBN
9787040406054
-
定价
79.00元
-
装帧
精装
-
开本
16开
-
纸张
胶版纸
-
页数
366页
-
字数
480千字
-
正文语种
简体中文,英语
-
原版书名
Introduction to Complex Networks:Models,Structures and Dynamics(Second Edition)
-
丛书
网络科学与工程丛书
- 【内容简介】
-
《复杂网络引论:模型、结构与动力学(第二版英文版)》是为自然科学、数学和工程领域的研究生以及本科高年级学生编写的-本入门教科书,在第一版的基础上补充、修订而成,可以作为一个学期教学使用的讲义,也可以作为科研参考书或自学读物。
《复杂网络引论:模型、结构与动力学(第二版英文版)》包括两大部分内容:第一部分是基础理论,包括背景材料和信息并附有适量的练习题,旨在让读者熟悉一些最基本的建模方法和分析技巧。第二部分是应用选题,包括复杂网络在几个代表性领域中的应用研究,这些章节彼此相对独立。最后一章是近年来比较活跃的几个前沿研究课题的简介。各章均附有详细的关键文献,以帮助有兴趣的读者能够很快地进入这些研究领域。
《复杂网络引论:模型、结构与动力学(第二版英文版)》保持了第一版的特色,通俗易懂,侧重于主要思想和基本方法的介绍,具有初等微积分、线性代数和常微分方程的读者能够轻松地学习书中的主要内容。同时增加了部分新内容,包括基本数理统计和动力系统基础、网络社团结构、网络博弈等。
- 【作者简介】
-
陈关荣,1981年获广州中山大学计算数学硕士学位,1987年获美国TexasA&M大学应用数学博士学位,现任香港城市大学讲座教授及混沌与复杂网络学术研究中心主任。于1996年当选为IEEEFellow,被ISI评定为工程学及物理学高引用率研究人员,2008年和2012年获国家自然科学二等奖,2011年获俄罗斯圣彼得堡国立大学授予荣誉博士学位和俄罗斯欧拉基金会颁发欧拉金质奖章,2014年获法国诺曼底大学授予荣誉博士学位,并当选为欧洲科学院院士。
汪小帆,1996年获东南大学工学博士学位,现为上海交通大学电子信息与电气工程学院教授、致远学院常务副院长。2008年受聘为教育部长江学者特聘教授。近年一直从事复杂网络系统分析与控制研究。获2002年国家杰出青年科学基金、2005年IEEE电路与系统汇刊最佳论文奖、2008年上海市自然科学一等奖和2010年上海市自然科学牡丹奖。任2014-2017年IFACLarge-ScaleComplexSystems技术委员会主席。
李翔,2002年获南开大学控制理论与控制工程博士学位,现为复旦大学信息科学与工程学院教授、电子工程系主任。近年一直从事复杂网络与系统控制的理论与应用研究。先后获得2005年IEEE电路与系统汇刊最佳论文奖、2008年上海市自然科学一等奖、2010年上海市青年科技英才奖、2014年国家杰出青年科学基金等。
- 【目录】
-
PartⅠFUNDAMENTALTHEORY
1Introduction
1.1BackgroundandMotivation
1.2ABriefHistoryofComplexNetworkResearch
1.2.1TheKonigsburgSeven-BridgeProblem
1.2.2RandomGraphTheory
1.2.3Small-WorldExperiments
1.2.4StrengthsofWeakTies
1.2.5HeterogeneityandtheWWW
1.3NewEraofComplex-NetworkStudies
Exercises
References
2Preliminaries
2.1ElementaryGraphTheory
2.1.1Background
2.1.2BasicConcepts
2.1.3AdjacencyIncidenceandLaplacianMatrices
2.1.4DegreeCorrelationandAssortativity
2.1.5SomeBasicResultsonGraphs
2.1.6EulerianandHamiltonianGraphs
2.1.7PlaneandPlanarGraphs
2.1.8TreesandBipartiteGraphs
2.1.9DirectedGraphs
2.1.10WeightedGraphs
2.1.11SomeApplications
2.2ElementaryProbabilityandStatistics
2.2.1ProbabilityPreliminaries
2.2.2StatisticsPreliminaries
2.2.3LawofLargeNumbersandCentralLimitTheorem
2.2.4MarkovChains
2.3ElementaryDynamicalSystemsTheory
2.3.1BackgroundandMorivation
2.3.2SomeAnalyticalTools
2.3.3ChaosinNonlinearSystems
2.3.4Kolmogorov-SinaiEntropy
2.3.5SomeExamplesofChaoricSysrems
2.3.6StabilitiesofNonlinearSystems
Exercises
References
3NetworkTopologies:BasicModelsandProperties
3.1Introduction
3.2RegularNetworks
3.3ERRandom-GraphModel
3.4Small-WorldNetworkModels
3.4.1WSSmall-WorldNerworkModel
3.4.2NWSmall-WorldNetworkModel
3.4.3SratisticalPropertiesofSmall-WorldNetworkModels
3.5NavigableSmall-WorldNetworkModel
3.6Scale-FreeNetworkModels
3.6.1BAScale-FreeNetworkModel
3.6.2RobustnessversusFragiliry
3.6.3ModifiedBAModels
3.6.4ASimpleModelwithPower-LawDeg-reeDistribution
3.6.5Local-WorldandMulti-Local-WortdNetworkModels
Exercises
References
PartⅡAPPLICATIONS-SELECTEDTOPICS
4Internet:TopologyandModeling
4.1Introduction
4.2TopologicalPropertiesoftheInternet
4.2.1Power-LowNode-DegreeDistribution
4.2.2HierarchicalStructure
4.2.3Rich-ClubStructure
4.2.4DisassortativeProperty
4.2.5CorenessandBetweenness
4.2.6GrowrhoftheInternet
4.2.7Router-LevelInternetTopology
4.2.8GeographicLayoutoftheInterner
4.3Random-GraphNetworkTopologyGenerator
4.4StructuralNetworkTopologyGenerators
4.4.1TiersTopologyGeneraror
4.4.2Transir-StubTopologyGenerator
4.5Connectivity-BasedNetworkTopologyGenerators
4.5.1Inet
4.5.2BRITEModel
4.5.3GLPModel
4.5.4PFPModel
4.5.5TANGModel
Index
点击展开
点击收起
— 没有更多了 —
以下为对购买帮助不大的评价