• R语言实用教程
图书条目标准图
21年品牌 40万+商家 超1.5亿件商品

R语言实用教程

下午5点前订单,当日发货!超时赔付

10.04 2.0折 49 九五品

库存2件

四川成都
认证卖家担保交易快速发货售后保障

作者薛毅、陈立萍 著

出版社清华大学出版社

出版时间2014-10

版次1

装帧平装

货号9787302371175503

上书时间2024-03-31

才华有限

四年老店
已实名 已认证 进店 收藏店铺

   商品详情   

品相描述:九五品
图书标准信息
  • 作者 薛毅、陈立萍 著
  • 出版社 清华大学出版社
  • 出版时间 2014-10
  • 版次 1
  • ISBN 9787302371175
  • 定价 49.00元
  • 装帧 平装
  • 开本 16开
  • 纸张 胶版纸
  • 页数 383页
  • 字数 602千字
【内容简介】
R语言,一种自由软件编程语言与操作环境,主要用于统计分析、绘图、数据挖掘. 虽然 R是一款统计软件,但也可用于数值分析和矩阵计算. 本书是 R语言的一本入门教材,讲授学习 R必备的内容. 仅使用最基本的统计知识,介绍 R函数的使用方法,以及如何使用 R的内置函数去解决统计中的问题. 介绍 R中与数值分析相关的内容,并利用相应算法来学习 R语言的编程. 介绍 R的绘图功能,及相关的绘图函数. 本书的每一章是针对一类问题设计的,讨论的内容由浅入深、循序渐进. 并在最后一章介绍扩展 R的方法,读者可以根据自己的需求扩展 R的相关功能. 本书适合于理工、经管和生物等专业的本科生、研究生,或者相关专业的技术人员学习 R使用,可以作为“统计计算”课程的教材或教学参考书,也可作为数学建模竞赛培训的辅导教材.
【目录】
第1章R语言入门
1.1R语言简介
1.1.1R软件的下载与安装
1.1.2初识R
1.1.3下拉式菜单与快捷方式
1.2向量
1.2.1基本运算
1.2.2数据对象
1.2.3向量赋值
1.2.4产生有规律的向量
1.2.5逻辑向量
1.2.6向量中的缺失数据
1.2.7字符型向量
1.2.8用vector函数生成向量
1.2.9复数向量
1.2.10向量的下标运算
1.2.11与数值向量有关的函数
1.3因子
1.3.1factor函数
1.3.2gl函数
1.3.3与因子有关的函数
1.4矩阵..
1.4.1矩阵的生成
1.4.2与矩阵运算有关的函数
1.4.3矩阵下标
1.5数组..
1.5.1数组的生成
1.5.2数组下标
1.5.3apply函数
1.6对象和它的模式与属性
1.6.1固有属性:mode和length
1.6.2修改对象的长度
1.6.3attributes和attr函数
1.6.4对象的class属性
1.7列表
1.7.1列表的构造
1.7.2列表的修改
1.7.3返回值为列表的函数
1.8数据框
1.8.1数据框的生成
1.8.2数据框的引用
1.8.3attach函数
1.8.4with函数
1.8.5列表与数据框的编辑
1.8.6lapply函数和sapply函数
1.9读、写数据文件
1.9.1读纯文本文件
1.9.2读取其他软件格式的数据文件
1.9.3读取Excel表格数据
1.9.4数据集的读取
1.9.5写数据文件
1.10控制流
1.10.1分支函数
1.10.2中止语句与空语句
1.10.3循环函数
1.11R程序设计
1.11.1函数定义
1.11.2定义新的二元运算
1.11.3有名参数与默认参数
1.11.4递归函数
1.11.5程序运行
1.11.6程序调试
第2章数值计算
2.1向量与矩阵的运算
2.1.1向量的四则运算
2.1.2向量的内积与外积
2.1.3矩阵的四则运算
2.1.4矩阵的函数运算
2.1.5求解线性方程组
2.1.6矩阵分解
2.2非线性方程(组)求根
2.2.1非线性方程求根
2.2.2求解非线性方程组
2.3求函数极值
2.3.1一元函数极值
2.3.2多元函数极值
2.4插值
2.4.1多项式插值
2.4.2分段线性插值
2.4.3分段Hermite插值
2.4.4三次样条函数
2.5数据拟合
2.5.1最小二乘原理
2.5.2求解超定线性方程组的QR分解方法
2.5.3多项式拟合
2.6数值积分
2.6.1梯形求积公式
2.6.2Simpson求积公式
2.6.3integrate函数
第3章R语言绘图
3.1高水平绘图函数.
3.1.1基本绘图函数--plot函数
3.1.2多组图--pairs函数
3.1.3协同图--coplot函数
3.1.4点图--dotchart函数
3.1.5饼图--pie函数
3.1.6条形图--parplot函数
3.1.7直方图--hist函数
3.1.8箱线图--boxplot函数
3.1.9Q-Q图--qqnorm函数
3.1.10三维透视图--persp函数
3.1.11等值线--contour函数
3.2图形参数
3.2.1高水平绘图函数中的参数
3.2.2图形参数的永久设置
3.2.3图形参数的临时设置
3.2.4图形元素控制
3.3低水平图形函数
3.3.1添加点、线、文字、符号或数学表达式
3.3.2添加直线、线段和图例
3.3.3添加图题、边与盒子
3.3.4添加多边形或图形阴影
3.3.5交互图形函数
3.4图形参数(续)
3.4.1坐标轴与坐标刻度
3.4.2图形边空
3.4.3多图环境
3.5图形设备
第4章概率、分布与随机模拟
4.1组合数与概率计算
4.1.1生成组合方案
4.1.2生成组合数
4.1.3概率计算
4.2分布函数
4.2.1分布函数
4.2.2分位数
4.3常用的分布函数
4.3.1正态分布
4.3.2均匀分布
4.3.3指数分布
4.3.4二项分布
4.3.5Poisson分布
4.3.6χ2分布
4.3.7t分布
4.3.8F分布
4.3.9R的内置函数
4.4样本统计量
4.4.1样本均值
4.4.2样本方差
4.4.3顺序统计量
4.4.4中位数
4.4.5分位数
4.4.6样本的k阶矩
4.4.7偏度系数与峰度系数
4.4.8经验分布函数
4.5随机抽样与随机模拟
4.5.1随机数的生成
4.5.2随机抽样
4.5.3随机模拟
第5章假设检验
5.1假设检验的基本思想
5.1.1基本概念
5.1.2基本思想
5.1.3两类错误
5.1.4P值
5.2重要的参数检验
5.2.1t检验
5.2.2F检验
5.2.3二项分布的近似检验
5.2.4二项分布的精确检验
5.2.5Poisson检验
5.2.6功效检验
5.3符号检验与秩检验
5.3.1符号检验
5.3.2秩检验与秩检验
5.3.3尺度参数检验
5.4分布检验
5.4.1Pearson拟合优度χ2检验
5.4.2Kolmogorov-Smirnov检验
5.4.3正态性检验
5.5列联表检验
5.5.1Pearsonχ2独立性检验
5.5.2Fisher精确独立性检验
5.5.3McNemar检验
5.5.4三维列联表的条件独立性检验
5.6相关性检验
5.6.1Pearson相关检验
5.6.2Spearman相关检验
5.6.3Kendall相关检验
5.6.4cor.test函数
5.7游程检验
第6章回归分析
6.1线性回归
6.1.1线性回归模型
6.1.2线性回归模型的计算
6.1.3预测区间与置信区间
6.1.4其他函数
6.2回归诊断
6.2.1为什么要作回归诊断
6.2.2残差检验
6.2.3影响分析
6.3Box-Cox变换
6.4多重共线性
6.4.1多重共线性现象
6.4.2岭估计
6.5逐步回归
6.5.1“最优”回归方程的选择
6.5.2逐步回归的计算
6.6稳健回归
6.6.1稳健回归的基本概念
6.6.2稳健回归
6.6.3抗干扰回归
6.7非线性回归
6.7.1多项式回归
6.7.2局部多项式回归
6.7.3非线性回归
6.8广义线性回归模型
6.8.1glm函数
6.8.2Logistic回归模型
6.8.3Poisson分布族
6.8.4正态分布族
第7章多元统计分析
7.1方差分析
7.1.1方差分析的数学模型
7.1.2方差分析的计算
7.1.3多重均值检验
7.1.4与方差分析有关的函数
7.1.5方差分析的进一步讨论
7.1.6秩检验
7.1.7协方差分析
7.2判别分析
7.2.1判别分析的数学模型
7.2.2判别分析的计算
7.3聚类分析
7.3.1距离和相似系数
7.3.2系统聚类法
7.3.3类个数的确定
7.3.4实例
7.3.5K均值聚类
7.4主成分分析
7.4.1主成分分析的数学模型
7.4.2主成分分析的计算
7.4.3主成分分析的应用
7.5因子分析
7.5.1因子分析的数学模型
7.5.2因子分析函数
7.5.3因子分析的计算
7.6典型相关分析
7.6.1典型相关分析的数学模型
7.6.2典型相关分析的计算
第8章多元分布
8.1基本概念
8.1.1多元分布函数与概率密度函数
8.1.2多元正态分布
8.1.3与多元正态分布有关的R函数
8.2样本统计量及抽样分布
8.2.1样本统计量
8.2.2抽样分布
8.3多元正态总体均值向量的检验
8.3.1单个总体均值向量的检验
8.3.2两个总体均值向量的检验
8.3.3R中的均值检验函数
8.4扩展包中的其他函数
8.4.1多元t分布
8.4.2多元非参数检验
8.4.3多元正态性检验
索引
参考文献
点击展开 点击收起

   相关推荐   

—  没有更多了  —

以下为对购买帮助不大的评价

此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP