• Python机器学习 预测分析核心算法
图书条目标准图
21年品牌 40万+商家 超1.5亿件商品

Python机器学习 预测分析核心算法

下午5点前订单,当日发货!超时赔付

10.67 1.5折 69 八五品

库存3件

四川成都
认证卖家担保交易快速发货售后保障

作者[美]Michael Bowles(鲍尔斯) 著;沙嬴、李鹏 译

出版社人民邮电出版社

出版时间2016-12

版次1

装帧平装

货号9787115433732014

上书时间2024-01-22

才华有限

四年老店
已实名 已认证 进店 收藏店铺

   商品详情   

品相描述:八五品
图书标准信息
  • 作者 [美]Michael Bowles(鲍尔斯) 著;沙嬴、李鹏 译
  • 出版社 人民邮电出版社
  • 出版时间 2016-12
  • 版次 1
  • ISBN 9787115433732
  • 定价 69.00元
  • 装帧 平装
  • 开本 16开
  • 纸张 胶版纸
  • 页数 316页
  • 字数 99999千字
  • 正文语种 简体中文
  • 原版书名 Machine Learning in Python:Essential Techniques for Predictive Analysis
【内容简介】
  在学习和研究机器学习的时候,面临令人眼花缭乱的算法,机器学习新手往往会不知所措。本书从算法和Python语言实现的角度,帮助读者认识机器学习。
  本书专注于两类核心的“算法族”,即惩罚线性回归和集成方法,并通过代码实例来展示所讨论的算法的使用原则。全书共分为7章,详细讨论了预测模型的两类核心算法、预测模型的构建、惩罚线性回归和集成方法的具体应用和实现。本书主要针对想提高机器学习技能的Python开发人员,帮助他们解决某一特定的项目或是提升相关的技能。
【作者简介】
  Michael Bowles,在硅谷黑客道场教授机器学习,提供机器学习项目咨询,同时参与了多家创业公司,涉及的领域包括生物信息学、金融高频交易等。他在麻省理工学院获得助理教授教职后,创建并运营了两家硅谷创业公司,这两家公司都已成功上市。他在黑客道场的课程往往听者云集并且好评颇多。
【目录】
第1 章 关于预测的两类核心
算法 ................................................1
1.1 为什么这两类算法如此有用 ....... 1
1.2 什么是惩罚回归方法..................... 6
1.3 什么是集成方法 ............................. 8
1.4 算法的选择 ...................................... 9
1.5 构建预测模型的流程................... 11
1.5.1 构造一个机器学习问题 ......12
1.5.2 特征提取和特征工程 ..........14
1.5.3 确定训练后的模型的性能 .....15
1.6 各章内容及其依赖关系 .............. 15
1.7 小结 ................................................. 17
1.8 参考文献 ........................................ 17
第2 章 通过理解数据来了解
问题 ..............................................19
2.1 “解剖”一个新问题 ..................... 19
2.1.1 属性和标签的不同类型
决定模型的选择 ..................21
2.1.2 新数据集的注意事项 ..........22
2.2 分类问题:用声纳发现未
爆炸的水雷 .................................... 23
2.2.1 “ 岩石vs 水雷”数据集的
物理特性 ..............................23
2.2.2 “ 岩石vs 水雷”数据集统计
特征 ......................................27
2.2.3 用分位数图展示异常点 ......30
2.2.4 类别属性的统计特征 ..........32
2.2.5 利用Python Pandas 对“岩石
vs 水雷”数据集进行统计
分析 ......................................32
2.3 对“岩石vs 水雷数据集”属性的
可视化展示 .................................... 35
2.3.1 利用平行坐标图进行可视化
展示 ......................................35
2.3.2 属性和标签的关系可视化 .....37
2.3.3 用热图(heat map)展示
属性和标签的相关性 ..........44
2.3.4 对“岩石vs. 水雷”数据集
探究过程小结 ......................45
2.4 基于因素变量的实数值预测-
鲍鱼的年龄 .................................... 45
2.4.1 回归问题的平行坐标图- 鲍鱼
问题的变量关系可视化 ......51
2.4.2 回归问题如何使用关联热
图-鲍鱼问题的属性对关
系的可视化 ..........................55
2.5 用实数值属性预测实数值目标:
评估红酒口感 ................................ 57
2.6 多类别分类问题:它属于哪种
玻璃 ................................................. 63
小结 ............................................................ 68
参考文献 ................................................... 69
第3 章 预测模型的构建:平衡性
能、复杂性以及大数据 ....71
3.1 基本问题:理解函数逼近.......... 71
3.1.1 使用训练数据 ......................72
3.1.2 评估预测模型的性能 ..........73
3.2 影响算法选择及性能的因素——
复杂度以及数据 ........................... 74
3.2.1 简单问题和复杂问题的
对比 ......................................74
3.2.2 一个简单模型与复杂模型的
对比 ......................................77
3.2.3 影响预测算法性能的因素 ....80
3.2.4 选择一个算法:线性或者
非线性 ..................................81
3.3 度量预测模型性能 ....................... 81
3.3.1 不同类型问题的性能评价
指标 ......................................82
3.3.2 部署模型的性能模拟 ..........92
3.4 模型与数据的均衡 ....................... 94
3.4.1 通过权衡问题复杂度、模型
复杂度以及数据集规模来选
择模型 ..................................94
3.4.2 使用前向逐步回归来控制过
拟合 ......................................95
3.4.3 评估并理解你的预测模型....101
3.4.4 通过惩罚回归系数来控制
过拟合——岭回归 ............103
小结 .......................................................... 112
参考文献 ................................................. 112
第4 章 惩罚线性回归模型 ..........113
4.1 为什么惩罚线性回归方法如此
有效 ............................................... 113
4.1.1 足够快速地估计系数 ........114
4.1.2 变量的重要性信息 ............114
4.1.3 部署时的预测足够快速 ....114
4.1.4 性能可靠 ............................114
4.1.5 稀疏解 ................................115
4.1.6 问题本身可能需要线性
模型 ....................................115
4.1.7 什么时候使用集成方法 ....115
4.2 惩罚线性回归:对线性回归进行
正则化以获得最优性能 ............ 115
4.2.1 训练线性模型:最小化错误
以及更多 ............................117
4.2.2 向OLS 公式中添加一个
系数惩罚项 ........................118
4.2.3 其他有用的系数惩罚项:
Manhattan 以及ElasticNet .....118
4.2.4 为什么套索惩罚会导致稀疏的
系数向量 ............................119
4.2.5 ElasticNet 惩罚项包含套索
惩罚项以及岭惩罚项 ........120
4.3 求解惩罚线性回归问题 ............ 121
4.3.1 理解最小角度回归与前向逐步
回归的关系 ........................121
4.3.2 LARS 如何生成数百个不同
复杂度的模型 ....................125
4.3.3 从数百个LARS 生成结果中
选择最佳模型 ....................127
4.3.4 使用Glmnet :非常快速
并且通用 ............................133
4.4 基于数值输入的线性回归方法的
扩展 ............................................... 140
4.4.1 使用惩罚回归求解分类
问题 ....................................140
4.4.2 求解超过2 种输出的分类
问题 ....................................145
4.4.3 理解基扩展:使用线性方法来
解决非线性问题 ................145
4.4.4 向线性方法中引入非数值
属性 ....................................148
小结 .......................................................... 152
参考文献 ................................................. 153
第5 章 使用惩罚线性方法来
构建预测模型 .....................155
5.1 惩罚线性回归的Python 包 ..... 155
5.2 多变量回归:预测红酒口感 ... 156
5.2.1 构建并测试模型以预测红酒
口感 ....................................157
5.2.2 部署前在整个数据集上进行
训练 ....................................162
5.2.3 基扩展:基于原始属性扩展
新属性来改进性能 ............168
5.3 二分类:使用惩罚线性回归来
检测未爆炸的水雷 ..................... 172
5.3.1 构建部署用的岩石水雷
分类器 ................................183
5.4 多类别分类- 分类犯罪现场的
玻璃样本 ...................................... 196
小结 .......................................................... 201
参考文献 ................................................. 202
第6 章 集成方法 .................................203
6.1 二元决策树 .................................. 203
6.1.1 如何利用二元决策树进行
预测 ....................................205
6.1.2 如何训练一个二元决策树....207
6.1.3 决策树的训练等同于
分割点的选择 ....................211
6.1.4 二元决策树的过拟合 ........214
6.1.5 针对分类问题和类别特征
所做的修改 ........................218
6.2 自举集成:Bagging 算法 ......... 219
6.2.1 Bagging 算法是如何
工作的 ................................219
6.2.2 Bagging 算法小结 .............230
6.3 梯度提升法(Gradient
Boosting) ..................................... 230
6.3.1 梯度提升法的基本原理 ....230
6.3.2 获取梯度提升法的最佳
性能 ....................................234
6.3.3 针对多变量问题的梯度
提升法 ................................237
6.3.4 梯度提升方法的小结 ........241
6.4 随机森林 ...................................... 241
6.4.1 随机森林:Bagging 加上随机
属性子集 ............................246
6.4.2 随机森林的性能 ................246
6.4.3 随机森林小结 ....................247
6.5 小结 ............................................... 248
6.6 参考文献 ...................................... 248
第7 章 用Python 构建集成
模型 ............................................251
7.1 用Python 集成方法工具包解决
回归问题 ...................................... 251
7.1.1 构建随机森林模型来预测
红酒口感 ............................251
7.1.2 用梯度提升预测红酒品质 ....258
7.2 用Bagging 来预测红酒口感 .... 266
7.3 Python 集成方法引入非数值
属性 ............................................... 271
7.3.1 对鲍鱼性别属性编码引入
Python 随机森林回归
方法 ....................................271
7.3.2 评估性能以及变量编码的
重要性 ................................274
7.3.3 在梯度提升回归方法中引入
鲍鱼性别属性 ....................276
7.3.4 梯度提升法的性能评价以及
变量编码的重要性 ............279
7.4 用Python 集成方法解决二分类
问题 ............................................... 282
7.4.1 用Python 随机森林方法探测
未爆炸的水雷 ....................282
7.4.2 构建随机森林模型探测未
爆炸水雷 ............................283
7.4.3 随机森林分类器的性能 ....288
7.4.4 用Python 梯度提升法探测
未爆炸水雷 ........................289
7.4.5 梯度提升法分类器的性能....296
7.5 用Python 集成方法解决多类别
分类问题 ...................................... 300
7.5.1 用随机森林对玻璃进行
分类 ....................................300
7.5.2 处理类不均衡问题 ............304
7.5.3 用梯度提升法对玻璃进行
分类 ....................................306
7.5.4 评估在梯度提升法中使用随机
森林基学习器的好处 ........311
7.6 算法比较 ...................................... 313
小结 .......................................................... 315
参考文献 ................................................. 315
点击展开 点击收起

   相关推荐   

—  没有更多了  —

以下为对购买帮助不大的评价

此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP