• 数据治理:工业企业数字化转型之道
图书条目标准图
21年品牌 40万+商家 超1.5亿件商品

数据治理:工业企业数字化转型之道

下午5点前订单,当日发货!超时赔付

36.7 2.3折 158 九五品

仅1件

四川成都
认证卖家担保交易快速发货售后保障

作者祝守宇、蔡春久 著

出版社电子工业出版社

出版时间2020-11

装帧其他

货号9787121395970503

上书时间2023-06-02

才华有限

四年老店
已实名 已认证 进店 收藏店铺

   商品详情   

品相描述:九五品
图书标准信息
  • 作者 祝守宇、蔡春久 著
  • 出版社 电子工业出版社
  • 出版时间 2020-11
  • 版次 1
  • ISBN 9787121395970
  • 定价 158.00元
  • 装帧 其他
  • 开本 16开
  • 页数 572页
  • 字数 0.78千字
【内容简介】

《数据治理:工业企业数字化转型》是一本全面关注工业企业数据治理方面的工具书,主要内容分为概述篇、体系篇、工具篇、实施篇及案例篇。

 

其中概述篇主要介绍工业企业数据治理的基础概念、主流数据治理标准及框架、数据治理的发展趋势等;

 

体系篇主要介绍数据管控、数据战略、数据架构、主数据管理等的基本原理与管理体系;

 

工具篇主要介绍主数据管理工具、数据模型管理工具、数据资产运营工具等;

 

实施篇主要介绍具体实施策略及路径选择、顶层架构规划与设计、数据资产运营实施等;

 

案例篇主要介绍电力、能源化工、钢铁、制造、战略投资等行业的数据治理案例,为读者提供专业、丰富、可信的数据治理实施范例。

 


 

《数据治理:工业企业数字化转型》是工业大数据应用技术国家工程实验室多年潜心研究的重要科研成果的总结和凝聚,既具有理论高度,也具备面向中国工业企业的可实操性。参与本书编著的作者均为国内各企业的数据治理专家,所有案例均来自这些企业的实践。

 

对企业的基层管理者或初入职场的人士来说,本书是充分认识数据治理意义、组织进行数据治理的具体方案和工具手册;对企业中层管理者来说,本书是一本配合企业数据治理的纲领性指南;对企业高层管理者来说,本书是一本推动企业数据治理的方法论。本书还适合作为高校的MBA、EMBA教材。

 


【作者简介】

祝守宇

 

中国航天科工集团航天云网公司副总经理、工业大数据应用技术国家工程实验室主任、教授级高级工程师。

 

曾获1997年美国贝尔实验室总裁金奖、美国电信管理协会(TMF)年度新产品大奖、北京市科技进步一等奖一次、北京市科技进步三等奖两次。先后主持国家重大产业专项十余项,拥有美国和中国发明专利十余项。长期从事互联网、大数据、复杂软件系统、移动通信、网络安全等领域的研究和产业化工作,是航天科工集团“五重大一专项”集团特聘专家。

 

 

 


 

蔡春久

 

DAMA中国理事会会员、大数据技术标准推进委员会数据资产专家、中国电子工业标准化技术协会数据管理应用推进分会副会长,数据工匠俱乐部创始人。

 

具有20余年的IT咨询和数据治理行业经验, 为中国石化、国家电投等80余家世界500强企业提供数据治理服务。

 


【目录】

第1篇 概述篇

 

第1章 工业企业需要数据治理 2
1.1 工业革命的演变与发展趋势 2
1.2 工业大数据是第四次工业革命的核心基础 4
1.3 各国的工业大数据战略 6
1.4 工业企业数据的核心价值 7
1.5 我国各行业数据治理现状 10
1.6 数据治理是工业大数据的基础 12
1.7 工业企业数据治理面临的挑战 12
本章精要 14

 

第2章 工业企业数据治理概述 15
2.1 数据治理的相关概念和定义 15
2.2 数据的分类 17
2.3 数据治理的顶层架构 20
2.4 数据治理的核心内容 21
本章精要 22

 

第3章 主流数据治理标准及框架介绍 23
3.1 国际标准 23
3.2 国内标准及模型 24
3.3 专业组织 26
3.4 国内外数据治理体系的对比分析 28
本章精要 30

 

第4章 数据治理的发展趋势 31
4.1 国内外数据治理的演变与发展 31
4.2 数据隐私保护政策 32
4.3 区块链与数据共享 33
4.4 5G技术与数据安全 38
4.5 数据文化与伦理道德 39
4.6 新技术与数据治理 40
4.7 工业企业数据的运营 41
本章精要 43

 

第5章 本书阅读导引 44
5.1 数据治理是一个系统工程 44
5.2 工具是数据治理的保障 45
5.3 实施数据治理有路线可循 45
5.4 数据治理已在诸多行业成功实施 46
参考资料 47
第2篇 体系篇

 

第6章 数据管控 51
6.1 数据管控概述 51
6.2 组织架构 53
6.2.1 数据治理组织架构 53
6.2.2 数据治理组织模式 55
6.2.3 数据治理职责分工 58
6.3 制度规范 61
6.3.1 数据治理制度框架 61
6.3.2 数据治理制度修订 64
6.4 执行流程 65
6.4.1 数据治理总体流程框架 65
6.4.2 数据治理典型场景的流程 67
6.5 设计机制 70
6.6 绩效体系 72
6.7 标准体系 74
本章精要 76

 

第7章 数据战略 77
7.1 数据战略概述 77
7.2 数据战略规划 77
7.2.1 愿景和目标 78
7.2.2 基本原则 79
7.2.3 战略举措选择 80
7.2.4 模型工具 81
7.3 数据战略实施 82
7.3.1 实施策略 83
7.3.2 实施路径 83
7.3.3 实施步骤 83
本章精要 87

 

第8章 数据架构 88
8.1 数据架构概述 89
8.2 框架设计 90
8.2.1 数据分布 90
8.2.2 数据主题域 92
8.2.3 数据关联关系 93
8.3 数据建模 98
8.3.1 概念数据模型 99
8.3.2 逻辑数据模型 100
8.3.3 物理数据模型 101
8.3.4 数据模型开发方法 102
本章精要 105

 

第9章 主数据管理 106
9.1 主数据和主数据管理 106
9.1.1 主数据的特征 106
9.1.2 主数据管理的基本概念 107
9.2 主数据标准管理 108
9.3 主数据全生命周期管理 109
9.4 主数据应用管理 110
9.5 企业常用的几类主数据 112
9.5.1 物料主数据 112
9.5.2 设备主数据 113
9.5.3 资产主数据 114
9.5.4 财务主数据 115
9.5.5 组织机构和员工主数据 116
本章精要 116

 

第10章 元数据管理 117
10.1 元数据的定义 117
10.2 元数据分类 117
10.2.1 业务元数据 118
10.2.2 技术元数据 119
10.2.3 操作元数据 120
10.3 元数据核心能力 120
10.4 元数据的价值 123
本章精要 124
第11章 数据指标管理 125
11.1 数据指标管理概述 125
11.1.1 数据指标应用和管理中的挑战 125
11.1.2 设计目的 126
11.1.3 设计思路 126
11.2 体系框架 128
11.2.1 典型的数据指标定义框架 128
11.2.2 指标选取原则及方法 129
11.2.3 指标体系层级设计 130
11.2.4 指标体系评价方法 131
11.3 找指标 132
11.4 理指标 134
11.5 管指标 136
11.6 用指标 137
本章精要 137

 

第12章 时序数据管理 138
12.1 时序数据管理概述 138
12.2 时序数据的特点 139
12.3 时序数据的应用 141
12.3.1 技术挑战 141
12.3.2 典型的技术架构及特点 142
12.3.3 系统核心功能 143
本章精要 143

 

第13章 数据质量管理 144
13.1 数据质量需求 144
13.2 数据质量检查 145
13.3 数据质量分析 146
13.4 数据质量提升 147
13.5 数据质量评估 149
13.5.1 数据质量问题的起因 150
13.5.2 数据质量管理技术指标 151
13.5.3 数据质量管理业务指标 152
本章精要 153

 

第14章 数据安全管理 155
14.1 数据安全管理概述 155
14.2 数据安全体系框架 156
14.3 数据安全防护策略 159
14.4 数据安全审计 161
14.5 数据安全风险评估 162
14.6 数据应急保障 164
本章精要 165

 

第15章 数据交换与服务 166
15.1 数据交换与服务的意义 167
15.2 数据交换与服务技术演进 168
15.2.1 文件共享技术 168
15.2.2 数据库中间表技术 168
15.2.3 点对点接口技术 168
15.2.4 消息队列技术 170
15.2.5 企业服务总线交换技术 171
15.2.6 ETL 数据交换技术 173
15.2.7 物联网数据采集交换
技术 173
15.3 工业企业数据交换与服务标准体系架构 175
15.3.1 CPS信息交换模型 176
15.3.2 设备互联总线 177
15.3.3 应用互联总线 178
15.3.4 数据总线 179
15.3.5 开放互联API网关 181
本章精要 182

 

第16章 数据共享与开放 183
16.1 共享与开放概述 183
16.2 数据资源目录 185
16.3 数据资源准备 186
16.3.1 数据采集 186
16.3.2 数据加工 187
16.3.3 数据保密 187
16.3.4 数据装载 189
16.3.5 数据发布 189
16.4 数据服务 190
16.5 共享与开放评价 190
本章精要 191

 

第17章 数据管理成熟度评估 192
17.1 数据管理成熟度评估模型 192
17.2 数据管理成熟度等级定义 195
17.3 开展数据管理成熟度评估 198
17.4 数据管理成熟度评估实施 199
本章精要 200
参考资料 200
第3篇 工具篇

 

第18章 数据治理工具概述 203

 

第19章 数据资产运营工具 207
19.1 数据资产目录 207
19.1.1 总体概述 208
19.1.2 数据资产目录系统构建 208
19.1.3 数据资产目录能力评估模型 210
19.2 数据资产价值评估 213
19.2.1 总体概述 213
19.2.2 数据资产价值评估模型 214
19.2.3 数据资产价值评估工具 223
本章精要 224

 

第20章 数据模型管理工具 225
20.1 数据模型管理工具概述 225
20.2 企业级数据模型管控 226
20.3 数据标准管控 228
20.3.1 标准的发布和工具访问 228
20.3.2 模型设计中的应用数据
标准 228
20.3.3 数据标准应用情况的自动检核 229
20.3.4 自定义标准的发布管理 229
20.4 数据字典的质量检核 230
本章精要 230

 

第21章 数据指标管理工具 231
21.1 指标库管理 231
21.2 指标体系管理 232
21.3 指标评价管理 233
21.4 指标应用管理 234
本章精要 235

 

第22章 主数据管理工具 236
22.1 主数据提取与整合 236
22.2 主数据模型管理 237
22.3 主数据清洗管理 238
22.3.1 主数据清洗的内容 239
22.3.2 主数据清洗的一般过程 239
22.4 主数据全周期管理 242
22.5 主数据质量管理 244
22.6 主数据发布与共享 246
本章精要 248

 

第23章 元数据管理工具 249
23.1 元数据管理工具概述 249
23.2 元数据在数据架构管理中的应用 250
23.3 元数据在数据资产目录中的应用 251
23.4 元数据在主数据管理中的应用 251
23.5 元数据在数据交换和共享中的应用 251
23.6 元数据在大数据平台中的应用 252
本章精要 253

 

第24章 时序数据处理工具 254
24.1 通用大数据处理工具的不足 254
24.2 时序数据处理工具应具备的功能和特点 255
24.3 时序数据的采集 257
24.4 时序数据处理工具 258
本章精要 260

 

第25章 数据质量管理工具 261
25.1 数据质量管理工具概述 261
25.2 数据质量稽核规则设置 262
25.3 数据质量任务管理 263
25.4 数据质量报告 264
本章精要 264

 

第26章 数据交换与服务工具 265
26.1 数据交换与服务工具概述 265
26.2 数据采集 266
26.3 数据交换 268
26.3.1 前置交换子系统 268
26.3.2 交换传输子系统 269
26.3.3 交换管理子系统 269
26.4 数据加工服务 269
26.5 数据共享服务 271
26.6 工业大数据技术平台 272
26.6.1 工业大数据的采集 272
26.6.2 工业大数据的交换 274
26.6.3 工业大数据的处理 275
本章精要 277

 

第27章 数据安全管理工具 278
27.1 数据安全管理工具概述 278
27.2 数据采集安全管理工具 279
27.2.1 数据分类与分级工具 279
27.2.2 采集内容及策略 279
27.2.3 数据采集人员管理工具 280
27.2.4 数据源鉴别及记录 280
27.3 数据传输安全管理工具 280
27.3.1 加密算法 281
27.3.2 对称加密 281
27.3.3 非对称加密 282
27.4 数据存储安全管理工具 282
27.4.1 数据存储介质管理 283
27.4.2 数据存储安全 283
27.4.3 数据备份和恢复 283
27.4.4 等级划分 284
27.5 数据处理安全管理工具 285
27.6 数据交换安全管理工具 286
27.6.1 数据导入/导出的安全保障 287
27.6.2 数据交换安全 287
27.6.3 数据销毁安全管理 288
27.7 统一的身份认证系统 289
本章精要 290

 

第28章 数据中台 291
28.1 数据中台的概念和定位 291
28.2 数据采集 293
28.2.1 数据采集方式 293
28.2.2 通用数据采集 293
28.2.3 流式数据采集 293
28.3 数据存储 294
28.3.1 分布式数据存储 294
28.3.2 NoSQL数据存储 294
28.4 数据计算 294
28.4.1 分布式查询 295
28.4.2 分布式计算 295
28.4.3 数据建模 295
28.4.4 数据分析 296
28.5 数据服务 296
28.5.1 API网关 297
28.5.2 API生成 298
28.5.3 API发布 298
28.5.4 API调用申请 298
28.5.5 API调用审核 298
28.5.6 API信息支持 298
28.5.7 API服务监控 299
28.6 从ETL向ELT转变 299
本章精要 300
参考资料 300
第4篇 实施篇

 

第29章 数据治理实施策略和路径选择 303
29.1 实施内容 303
29.2 路径选择 304

 

第30章 数据治理顶层架构规划与设计 307
30.1 实施内容 307
30.2 步骤和方法 309
30.2.1 顶层设计总体思路 309
30.2.2 数据治理顶层设计要点 311
30.3 成熟度评估 322
本章精要 324

 

第31章 数据资产运营实施 325
31.1 实施内容 325
31.2 步骤和方法 327
本章精要 328

 

第32章 主数据管理实施 329
32.1 实施内容 329
32.2 步骤和方法 329
32.2.1 实施步骤 329
32.2.2 实施方法 331
本章精要 336

 

第33章 元数据管理实施 337
33.1 实施内容 337
33.2 步骤和方法 337
本章精要 340

 

第34章 数据指标管理实施 341
34.1 实施内容 341
34.2 步骤和方法 342
34.3 模板 344
34.3.1 数据指标项定义 344
34.3.2 形成指标卡片及指标模板 345
34.3.3 数据需求规划 346
本章精要 347

 

第35章 数据质量管理实施 348
35.1 实施内容 348
35.2 步骤和方法 349
35.2.1 数据剖析 349
35.2.2 数据质量诊断 350
35.2.3 数据处理规则 351
35.2.4 数据质量优化 351
35.2.5 数据质量监管 352
35.2.6 实施数据质量管理时需注意的问题 353
本章精要 354

 

第36章 数据安全管理实施 355
36.1 实施内容 355
36.2 实施步骤 355
36.3 实践模式 358
36.3.1 数据安全管理的建设策略 358
36.3.2 数据安全管理的切入方式 359
36.3.3 工业互联网云平台的数据安全 359
本章精要 360
第37章 数据治理常见误区 361
参考资料 363
第5篇 案例篇

 

第38章 电力行业:夯实数字化转型基础――南方电网数据资产管理行动实践 365

 

第39章 电力行业:支撑集团产业数字化转型――国家电投集团数据治理实践 380

 

第40章 能源化工行业:数据治理助百年油企数字化转型 398

 

第41章 钢铁行业:酒钢集团数据治理实践 413

 

第42章 汽车行业:数据驱动长安汽车数字化转型 420
2

 

第43章 核工业:物料主数据治理助力核电智慧运营 433

 

第44章 航空行业:军工企业的“三位一体”数据治理体系建设实践 441

 

第45章 航空行业:面向航空装备研制生产的数据治理研究与实践 456

 

第46章 重型装备制造行业:数据标准,装备中国――中国一重的数据标准化管理项目 468

 

第47章 交通物流行业:主数据治理助力中国外运数字化转型 477

 

第48章 建材行业:中国建材集团工业大数据应用实践 490

 

第49章 制造行业:威孚集团基于斯欧应用互联平台建设数据通道 501

 

第50章 战略投资行业:国投集团的数据标准化管理实践 514

 

第51章 多元化集团:数据治理助力多元化企业集团管控 532
附录A 工业英文缩写术语表 545

点击展开 点击收起

—  没有更多了  —

以下为对购买帮助不大的评价

此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP