动手学机器学习
正版新书 新华官方库房直发 可开电子发票
¥
42.21
4.7折
¥
89.8
全新
库存112件
作者张伟楠,赵寒烨,俞勇
出版社人民邮电出版社
ISBN9787115618207
出版时间2023-08
版次1
装帧平装
开本16开
纸张胶版纸
页数288页
字数462千字
定价89.8元
货号SC:9787115618207
上书时间2024-12-03
商品详情
- 品相描述:全新
-
全新正版 提供发票
- 商品描述
-
作者简介:
张伟楠,上海交通大学副教授,博士生导师,ACM班机器学习、强化学习课程授课教师。主要研究强化学习、数据挖掘、知识图谱、深度学习以及这些技术在推荐系统、游戏智能、机器人控制等场景中的应用,累计发表国际期刊和会议论文180余篇。
赵寒烨,上海交通大学 APEX数据与知识管理实验室博士生,师从张伟楠副教授,研究方向为强化学习、机器学习。以一作身份在人工智能国际会议 NeurIPS上发表论文,并参与多本机器学习相关教材的编写。
俞勇,上海交通大学ACM班创办人,上海交通大学特聘教授。2018年创办伯禹人工智能学院,在上海交通大学ACM班人工智能专业课程体系的基础上,对人工智能课程体系进行创新,致力于培养人工智能算法工程师和研究员。
主编推荐:
1.名家作品。上海交通大学ACM班创办人俞勇教授、博士生导师张伟楠副教授、APEX实验室博士生赵寒烨编写。
2.周志华、朱军、李文新、黄萱菁、刘铁岩、陈天奇等多位业内大咖力荐,内容丰富实用。
3.基于上交大ACM 班的机器学习课程构建机器学习的学习体系,理论扎实,放心学习。
4.配套资源丰富,理论解读视频+在线代码+习题+配套PPT课件+学习社群,有效提升学习效率。
媒体评论:
本书从机器学习的基本概念入手,结合sklearn机器学习算法库,以大量示例和代码带领读者走进机器学习的世界。
——周志华 南京大学计算机科学与技术系主任兼人工智能学院院长
本书源自上海交通大学 ACM 班机器学习课程讲义,着力帮助读者融会贯通,深入理解机器学习原理并提高动手实战能力,是培养新一代人工智能实战型人才难得的好书。
——朱军 清华大学计算机科学与技术系博世人工智能冠名教授、IEEE会士
本书是全面、系统的机器学习教材,主要介绍机器学习的核心概念及代表性方法。本书不仅涵盖神经网络、集成学习等常见的机器学习理论,还配备可在线运行的代码,帮助读者通过动手实战来加强对机器学习技术的理解。无论是初学者还是行业人士,都能从本书中得到有价值的帮助和指导。
——李文新 北京大学计算机学院教授、北京市教学名师、北京大学计算机实验教学中心主任
本书形态新颖、丰富。纸质图书对机器学习的知识体系进行系统介绍,理论解读视频课程对疑难知识点进行更透彻的讲解,代码支持在线运行、修改,习题帮助读者检验、巩固学习效果,教学课件帮助高校教师备课。本书既能为行业人士自学机器学习提供体系化的学习资源,又能通过动手学的方式帮助高校教师和学生完成机器学习的教学与学习。
——黄萱菁 复旦大学计算机科学技术学院、现代语言学研究院教授
智能化升级已成为当代企业在数字化转型后攀登的新阶梯。为此,需要大量具备专业知识的人工智能人才,他们不仅要深入理解人工智能的理论和算法,更应具备实战能力,以应对实际应用场景中的挑战。本书正是为培养这种实战型人工智能人才而编写的,内容详实、示例丰富、代码清晰,强烈推荐给所有希望深入了解人工智能并进行动手实战的读者。
——刘铁岩 微软杰出首席科学家、微软研究院科学智能中心亚洲区负责人、微软亚洲研究院副院长
上海交通大学ACM班注重培养学生扎实的专业基础和动手实战能力。俞勇老师团队编写的这本书体现了上海交通大学ACM班在人工智能基础模块人才培养方面的特色理念,在此推荐给各位读者。
——陈天奇 卡内基梅隆大学机器学习系、计算机科学系助理教授
内容简介:
本书系统介绍了机器学习的基本内容及其代码实现,是一本着眼于机器学习教学实践的图书。
本书包含4个部分:第一部分为机器学习基础,介绍了机器学习的概念、数学基础、思想方法和简单的机器学习算法;第二部分为参数化模型,讲解线性模型、神经网络等算法;第三部分为非参数化模型,主要讨论支持向量机和决策树模型及其变种;第四部分为无监督模型,涉及聚类、降维、概率图模型等多个方面。本书将机器学习理论和实践相结合,以大量示例和代码带领读者走进机器学习的世界,让读者对机器学习的研究内容、基本原理有基本认识,为后续进一步涉足深度学习打下基础。
本书适合对机器学习感兴趣的专业技术人员和研究人员阅读,同时适合作为人工智能相关专业机器学习课程的教材。
目录:
第一部分机器学习基础
第1章初探机器学习2
1.1人工智能的“两只手和四条腿”2
1.2机器学习是什么2
1.3时代造就机器学习的盛行4
1.4泛化能力:机器学习奏效的本质5
1.5归纳偏置:机器学习模型的“天赋”6
1.6机器学习的7
1.7小结7
第2章机器学习的数学基础8
2.1向量8
2.2矩阵10
2.2.1矩阵的基本概念10
2.2.2矩阵运算11
2.2.3矩阵与线性方程组12
2.2.4矩阵范数13
2.3梯度14
2.4凸函数17
2.5小结19
第3章k近邻算法20
3.1KNN算法的原理20
3.2用KNN算法完成分类任务21
……
— 没有更多了 —
全新正版 提供发票
以下为对购买帮助不大的评价