• 高等数学=Advanced Mathematics:英文 (第2版)
图书条目标准图
21年品牌 40万+商家 超1.5亿件商品

高等数学=Advanced Mathematics:英文 (第2版)

正版二手,均有笔记不影响使用,无赠品、光盘、MP3等。如需购买套装书,请联系客服核实,批量上传数据有误差,默认一本,套装书售后运费自理,还请见谅!

8.71 1.9折 46 八五品

库存14件

山东枣庄
认证卖家担保交易快速发货售后保障

作者北京邮电大学高等数学双语

出版社北京邮电大学出版社有限公司

出版时间2017-10

版次1

装帧其他

货号9787563552726

上书时间2024-11-14

必过书城

四年老店
已实名 已认证 进店 收藏店铺

   商品详情   

品相描述:八五品
图书标准信息
  • 作者 北京邮电大学高等数学双语
  • 出版社 北京邮电大学出版社有限公司
  • 出版时间 2017-10
  • 版次 1
  • ISBN 9787563552726
  • 定价 46.00元
  • 装帧 其他
  • 开本 16开
  • 纸张 胶版纸
  • 页数 303页
  • 字数 514千字
【内容简介】
本书是根据国家教育部非数学专业数学基础课教学指导分委员会制定的工科类本科数学基础课程教学基本要求编写的全英文教材,全书分为上、下两册,此为上册,主要包括函数与极限,一元函数微积分及其应用和微分方程三部分。本书对基本概念的叙述清晰准确,对基本理论的论述简明易懂,例题习题的选配典型多样,强调基本运算能力的培养及理论的实际应用。本书可作为高等理工科院校非数学类专业本科生的教材,也可供其他专业选用和社会读者阅读。
   The aim of this book is to meet the requirement of bilingual teaching of advanced mathematics.This book is divided into two volumes, and the first volume contains functions and limits, calculus of functions of a single variable and differential equations. The selection of the contents is in accordance with the fundamental requirements of teaching issued by the Ministry of Education of China and based on the property of our university. This book may be used as a textbook for undergraduate students in the science and engineering schools whose majors are not mathematics, and may also be suitable to the readers at the same level.
【目录】
Contents 

Chapter 1  Fundamental Knowledge of Calculus1 

  1.1  Mappings and Functions1 

    1.1.1  Sets and Their Operations1 

    1.1.2  Mappings and Functions6 

    1.1.3  Elementary Properties of Functions11 

    1.1.4  Composite Functions and Inverse Functions14 

    1.1.5  Basic Elementary Functions and Elementary Functions16 

  Exercises 1.1  A23 

  Exercises 1.1  B25 

  1.2  Limits of  Sequences26 

    1.2.1  The Definition of Limit of a Sequence26 

    1.2.2  Properties of Limits of Sequences31 

    1.2.3  Operations of Limits of Sequences35 

    1.2.4  Some Criteria for Existence of the Limit of a Sequence38 

  Exercises 1.2  A44 

  Exercises 1.2  B46 

  1.3  The Limit of a Function46 

    1.3.1  Concept of the Limit of a Function47 

    1.3.2  Properties and Operations of Limits for Functions53 

    1.3.3  Two Important Limits of Functions58 

  Exercises 1.3  A61 

  Exercises 1.3  B63 

  1.4  Infinitesimal and Infinite Quantities63 

    1.4.1  Infinitesimal Quantities63 

    1.4.2  Infinite Quantities65 

    1.4.3  The Order of Infinitesimals and Infinite Quantities67 

  Exercises 1.4  A71 

  Exercises 1.4  B73 

  1.5  Continuous Functions73 

    1.5.1  Continuity of Functions74 

    1.5.2  Properties and Operations of Continuous Functions76 

    1.5.3  Continuity of Elementary Functions78 

    1.5.4  Discontinuous Points and Their Classification80 

    1.5.5  Properties of Continuous Functions on a Closed Interval83 

  Exercises 1.5  A87 

  Exercises 1.5  B89 

Chapter 2  Derivative and Differential91 

  2.1  Concept of Derivatives91 

    2.1.1  Introductory Examples 91 

    2.1.2  Definition of Derivatives92 

    2.1.3  Geometric Meaning of the Derivative96 

    2.1.4  Relationship between Derivability and Continuity96 

  Exercises 2.1  A98 

  Exercises 2.1  B99 

  2.2  Rules of Finding Derivatives99 

    2.2.1  Derivation Rules of Rational Operations100 

    2.2.2  Derivation Rules of Composite Functions101 

    2.2.3  Derivative of Inverse Functions103 

    2.2.4  Derivation Formulas of Fundamental Elementary Functions104 

  Exercises 2.2  A105 

  Exercises 2.2  B107 

  2.3  Higher Order Derivatives107 

  Exercises 2.3  A110 

  Exercises 2.3  B111 

  2.4  Derivation of Implicit Functions and Parametric Equations,  

Related Rates111 

    2.4.1  Derivation of Implicit Functions111 

    2.4.2  Derivation of Parametric Equations114 

    2.4.3  Related Rates118 

  Exercises 2.4  A120 

  Exercises 2.4  B122 

  2.5  Differential of the Function123 

    2.5.1  Concept of the Differential123 

    2.5.2  Geometric Meaning of the Differential125 

    2.5.3  Differential Rules of Elementary Functions126 

    2.5.4  Differential in Linear Approximate Computation127 

  Exercises 2.5128 

Chapter 3  The Mean Value Theorem and Applications of Derivatives130 

  3.1  The Mean Value Theorem130 

    3.1.1  Rolle's Theorem 130 

    3.1.2  Lagrange's Theorem132 

    3.1.3  Cauchy's Theorem135 

  Exercises 3.1  A137 

  Exercises 3.1  B138 

  3.2  L'Hospital's Rule138 

  Exercises 3.2  A144 

  Exercises 3.2  B145 

  3.3  Taylor's Theorem145 

    3.3.1  Taylor's Theorem145 

    3.3.2  Applications of Taylor's Theorem149 

  Exercises 3.3  A150 

  Exercises 3.3  B151 

  3.4  Monotonicity, Extreme Values, Global Maxima and Minima of Functions151 

    3.4.1  Monotonicity of Functions151 

    3.4.2  Extreme Values153 

    3.4.3  Global Maxima and Minima and Its Application156 

  Exercises 3.4  A158 

  Exercises 3.4  B160 

  3.5  Convexity of Functions, Inflections160 

  Exercises 3.5  A165 

  Exercises 3.5  B166 

  3.6  Asymptotes and Graphing Functions166 

  Exercises 3.6170 

Chapter 4  Indefinite Integrals172 

  4.1  Concepts and Properties of Indefinite Integrals172 

    4.1.1  Antiderivatives and Indefinite Integrals172 

    4.1.2  Formulas for  Indefinite Integrals174 

    4.1.3  Operation Rules of Indefinite Integrals175 

  Exercises 4.1  A176 

  Exercises 4.1  B177 

  4.2  Integration by Substitution177 

    4.2.1  Integration by the First Substitution177 

    4.2.2  Integration by the Second Substitution181 

  Exercises 4.2  A184 

  Exercises 4.2  B186 

  4.3  Integration by Parts186 

  Exercises 4.3  A193 

  Exercises 4.3  B194 

  4.4  Integration of Rational Functions194 

    4.4.1  Rational Functions and Partial Fractions194 

    4.4.2  Integration of Rational Fractions197 

    4.4.3  Antiderivatives Not Expressed by Elementary Functions201 

  Exercises 4.4201 

Chapter 5  Definite Integrals202 

  5.1  Concepts and Properties of Definite Integrals202 

    5.1.1  Instances of Definite Integral Problems202 

    5.1.2  The Definition of the Definite Integral205 

    5.1.3  Properties of Definite Integrals208 

  Exercises 5.1  A213 

  Exercises 5.1  B214 

  5.2  The Fundamental Theorems of Calculus215 

    5.2.1  Fundamental Theorems of Calculus215 

    5.2.2  Newton?Leibniz Formula for Evaluation of Definite Integrals217 

  Exercises 5.2  A219 

  Exercises 5.2  B221 

  5.3  Integration by Substitution and by Parts in Definite Integrals222 

    5.3.1  Substitution in Definite Integrals222 

    5.3.2  Integration by Parts in Definite Integrals225 

  Exercises  5.3  A226 

  Exercises 5.3  B228 

  5.4  Improper Integral229 

    5.4.1  Integration on an Infinite Interval229 

    5.4.2  Improper Integrals with Infinite Discontinuities232 

  Exercises 5.4  A235 

  Exercises 5.4  B236 

  5.5  Applications of Definite Integrals237 

    5.5.1  Method of Setting up Elements of Integration237 

    5.5.2  The Area of a Plane Region239 

    5.5.3  The Arc Length of Plane Curves243 

    5.5.4  The Volume of a Solid by Slicing and Rotation about an Axis 247 

    5.5.5  Applications of Definite Integral in Physics249 

  Exercises 5.5  A252 

  Exercises 5.5  B254 

Chapter 6  Differential Equations256 

  6.1  Basic Concepts of Differential Equations256 

    6.1.1  Examples of Differential Equations256 

    6.1.2  Basic Concepts258 

  Exercises 6.1259 

  6.2  First?Order Differential Equations260 

    6.2.1  First?Order Separable Differential Equation260 

    6.2.2  Equations can be Reduced to Equations with Variables Separable262 

    6.2.3  First?Order Linear Equations266 

    6.2.4  Bernoulli's Equation269 

    6.2.5  Some Examples that can be Reduced to First?Order Linear Equations270 

  Exercises 6.2272 

  6.3  Reducible Second?Order Differential Equations273 

  Exercises 6.3276 

  6.4  Higher?Order Linear Differential Equations277 

    6.4.1  Some Examples of Linear Differential Equation of Higher?Order277 

    6.4.2  Structure of Solutions of Linear Differential Equations279 

  Exercises 6.4282 

  6.5  Linear Equations with Constant Coefficients283 

    6.5.1  Higher?Order Linear Homogeneous Equations with Constant Coefficients283 

    6.5.2  Higher?Order Linear Nonhomogeneous Equations with Constant Coefficients287 

  Exercises 6.5294 

  6.6  *Euler's Differential Equation295 

  Exercises 6.6296 

  6.7  Applications of Differential Equations296 

  Exercises 6.7301 

Bibliography 

303
点击展开 点击收起

   相关推荐   

—  没有更多了  —

以下为对购买帮助不大的评价

此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP