机器学习入门必备
正版二手,均有笔记不影响使用,无赠品、光盘、MP3等。如需购买套装书,请联系客服核实,批量上传数据有误差,默认一本,套装书售后运费自理,还请见谅!
¥
5.22
1.3折
¥
39
八五品
库存12件
作者[美]Oliver Theobald(奥利弗· 西奥博尔德))著刘翔宇
出版社机械工业出版社
出版时间2020-11
版次1
装帧其他
货号9787111662242
上书时间2024-11-09
商品详情
- 品相描述:八五品
图书标准信息
-
作者
[美]Oliver Theobald(奥利弗· 西奥博尔德))著刘翔宇
-
出版社
机械工业出版社
-
出版时间
2020-11
-
版次
1
-
ISBN
9787111662242
-
定价
39.00元
-
装帧
其他
-
开本
32开
-
纸张
胶版纸
-
页数
124页
-
字数
125千字
- 【内容简介】
-
本书是一本机器学习入门的必备图书,书中没有让人头晕眼花的公式推导,而是通过一些易于理解的类比、案例以及图片,以通俗易懂的方式讲解了机器学习中的一些名词和常见算法,使初学者能够很容易地掌握机器学习的相关概念工具、数据处理、回归与分析、建模与优化等内容。书中还介绍了使用代码构建一个机器学习模型,将读者带入实践环节。
本书非常适合没有任何基础的人工智能爱好者学习使用;对于对机器学习领域还不是很了解的读者来说,本书也是一本非常好的入门书籍。
- 【目录】
-
译者序
前言
第1章什么是机器学习
第2章机器学习种类
21监督学习
22非监督学习
23强化学习
第3章机器学习工具箱
31数据
32基础设施
33算法
34可视化
35高级工具箱
36大数据
37高级基础设施
38高级算法
第4章数据清洗
41特征选择
42行压缩
43Onehot编码
44分箱
45缺失值
第5章设置数据
51交叉验证
52需要多少数据
第6章回归分析
61计算示例
62逻辑回归
63支持向量机
第7章聚类
71k近邻
72k均值聚类
73设置k值
第8章偏差和方差
第9章人工神经网络
91概述
92构建神经网络
第10章决策树
101构建决策树
102随机森林
103Boosting
第11章集成建模
第12章开发环境
121导库
122导入数据集并预览
123查找行
124打印列名
第13章使用Python构建模型
131导库
132导入数据集
133清洗数据集
134清洗过程
135分割数据
136选择算法并配置超参数
137评估结果
第14章模型优化
141模型优化代码
142网格搜索模型代码
第15章模型测试
第16章其他资源
161机器学习
162人工智能的未来
163编程
164推荐系统
165深度学习
166未来生涯
第17章数据集下载
171世界幸福报告数据集
172酒店评论数据集
173精酿啤酒数据集
参考文献
点击展开
点击收起
— 没有更多了 —
以下为对购买帮助不大的评价