• Hadoop 3大数据技术快速入门
图书条目标准图
21年品牌 40万+商家 超1.5亿件商品

Hadoop 3大数据技术快速入门

正版二手,均有笔记不影响使用,无赠品、光盘、MP3等。如需购买套装书,请联系客服核实,批量上传数据有误差,默认一本,套装书售后运费自理,还请见谅!

14.45 2.4折 59 八五品

库存11件

山东枣庄
认证卖家担保交易快速发货售后保障

作者牛搞

出版社清华大学出版社

出版时间2021-09

版次1

装帧其他

货号9787302586463

上书时间2024-11-09

必过书城

四年老店
已实名 已认证 进店 收藏店铺

   商品详情   

品相描述:八五品
图书标准信息
  • 作者 牛搞
  • 出版社 清华大学出版社
  • 出版时间 2021-09
  • 版次 1
  • ISBN 9787302586463
  • 定价 59.00元
  • 装帧 其他
  • 开本 16开
  • 纸张 胶版纸
  • 页数 256页
  • 字数 431千字
【内容简介】
本书基于Hadoop 3.3.0,覆盖Hadoop、HBase、Hive的核心概念、实践应用、程序开发等方面的内容,帮你快速解决大数据是什么和怎么用的问题,书中还利用Docker来部署Hadoop分布式集群,让你同时学会4种流行的技术。 本书共9章,主要内容包括Hadoop概述、HDFS原理详解、Yarn原理详解、Hadoop系统配置、高可用Hadoop配置、HDFS编程、MapReduce编程、Hive实战、HBase实战。 本书从案例入手、通俗易懂,能使读者在短时间内迅速掌握Hadoop大数据技术。本书既适合Hadoop大数据初学者、大数据应用开发人员、大数据处理人员使用,也适合高等院校和培训机构大数据相关专业的师生教学参考。
【作者简介】
牛搞,软件开发从业15年编程实战经验,流媒体技术专家,高性能服务器专家。CSDN知名博主。现为IOS、Adroid、C  高级培训讲师。著有图书《Android 9编程通俗演义》《Android 10 Kotlin编程通俗演义》。
【目录】
第1章  概述 1

1.1  什么是大数据 1

1.1.1  大数据系统的定位 1

1.1.2  与传统分布式系统的区别 1

1.1.3  成功的大数据系统项目 2

1.2  Hadoop的原理 2

1.2.1  存储与资源调度 2

1.2.2  计算框架原理 2

1.3  总结 5

第2章  HDFS原理详解 6

2.1  主从节点架构 6

2.2  数据冗余 7

2.3  fsimage与edits 8

2.4  SecondaryNameNode 9

2.5  HA 10

2.6  自动故障转移 11

2.7  ZooKeeper 13

2.8  防脑裂 14

2.9  联邦 15

2.10  总结 16

第3章  Yarn原理详解 17

3.1  概述 17

3.2  作业调度策略 19

3.2.1  容量调度器 19

3.2.2  公平调度器 21

3.2.3  队列其他事项 22

3.3  Yarn与MapReduce程序 22

第4章  配置Hadoop系统 24

4.1  Docker简介 24

4.2  安装Docker 25

4.2.1  Windows、macOS做宿主系统 25

4.2.2  Linux做宿主系统 26

4.2.3  测试Docker容器 30

4.3  创建Hadoop容器 32

4.4  配置独立模式Hadoop 34

4.5  配置伪分布Hadoop 37

4.5.1  安装并配置SSH 37

4.5.2  安装其他命令行程序 38

4.5.3  编辑core-site.xml 38

4.5.4  编辑hdfs-site.xml 39

4.5.5  编辑mapred-site.xml 40

4.5.6  编辑yarn-site.xml 40

4.5.7  编辑hadoop-env.sh 41

4.5.8  运行伪分布式Hadoop 41

4.5.9  状态监控 43

4.6  基于Dockerfile的伪分布Hadoop 45

4.6.1  Dockerfile 45

4.6.2  构建Hadoop镜像 46

4.6.3  运行容器 47

4.6.4  配置Hadoop 48

4.7  配置全分布式Hadoop 49

4.7.1  组件部署架构 49

4.7.2  配置思路 50

4.7.3  修改配置文件 50

4.7.4  创建集群 51

4.7.5  启动集群 53

4.8  Windows下运行Hadoop 55

4.8.1  配置独立模式Hadoop 55

4.8.2  配置伪分布式Hadoop 56

4.9  Yarn调度配置 60

4.9.1  容量调度器 61

4.9.2  公平调度器 63

第5章  配置高可用Hadoop 66

5.1  HDFS高可用 66

5.1.1  组件部署架构 66

5.1.2  修改配置文件 67

5.1.3  创建镜像 70

5.1.4  创建HA HDFS集群 72

5.1.5  运行HA HDFS 73

5.1.6  测试HA HDFS 74

5.1.7  NameNode自动故障转移 75

5.2  Yarn高可用 78

第6章  HDFS编程 81

6.1  安装开发工具 81

6.1.1  安装Git 81

6.1.2  安装Maven 83

6.1.3  安装VSCode 84

6.1.4  安装VSCode插件 85

6.2  Native编程 87

6.2.1  创建HDFS客户端项目 87

6.2.2  示例1:查看目录状态 91

6.2.3  添加依赖库 92

6.2.4  运行程序 96

6.2.5  示例2:创建目录和文件 97

6.2.6  示例3:读取文件内容 99

6.2.7  示例4:上传和下载文件 100

6.3  WebHDFS与HttpFS 101

6.3.1  WebHDFS 101

6.3.2  VSCode插件RestClient 103

6.3.3  HttpFS 104

第7章  MapReduce编程 106

7.1  准备测试环境与创建项目 106

7.2  添加MapReduce逻辑 107

7.2.1  添加Map类 108

7.2.2  添加Reduce类 109

7.3  创建Job 110

7.4  添加依赖库 111

7.5  运行程序 112

7.6  查看运行日志 114

7.7  在Hadoop中运行程序 116

7.8  Combiner 117

7.9  Mapper与Reducer数量 119

7.10  实现SQL语句 120

7.10.1  简单查询 120

7.10.2  排序 127

7.10.3  复杂排序 129

7.10.4  分区 132

7.10.5  组合 134

7.10.6  总结 135

7.11  实现SQL JOIN 136

7.11.1  INNER JOIN 136

7.11.2  MapReduce实现JOIN 137

7.11.3  Mapper JOIN 142

7.11.4  DistributedCache 146

7.12  Counter 148

7.13  其他组件 149

7.14  升级版的WordCount 150

7.15  分布式k-means 154

7.15.1  Mapper类 155

7.15.2  Reducer类 156

7.15.3  执行任务的方法 158

7.15.4  辅助类 159

7.15.5  运行 162

7.15.6  MapReduce深入剖析 162

第8章  Hive 166

8.1  Hive的设计架构 166

8.2  运行架构 167

8.3  安装配置Hive3 168

8.3.1  安装依赖软件 168

8.3.2  创建Hive镜像Dockerfile 170

8.3.3  创建docker-compose.yml 171

8.3.4  Hadoop配置调整 172

8.3.5  为Hive准备数据库 172

8.4  运行Hive3 173

8.5  其他运行方式 175

8.5.1  MetaStore单独运行 175

8.5.2  嵌入Meta数据库 176

8.5.3  HiveServer2与beeline合体 176

8.6  Hive数据管理 176

8.6.1  基本操作 177

8.6.2  Hive表 178

8.6.3  数据倾斜 189

8.7  Hive查询优化 190

8.8  索引 192

8.9  HCatalog 192

8.10  Hive编程 194

8.10.1  JDBC操作Hive 194

8.10.2  自定义函数 196

8.11  总结 208

第9章  HBase 209

9.1  什么是HBase 209

9.2  HBase架构 210

9.3  安装与配置 211

9.3.1  独立模式运行 211

9.3.2  伪分布模式 215

9.3.3  全分布模式 216

9.4  基本数据操作 218

9.4.1  表管理 218

9.4.2  添加数据 220

9.4.3  修改数据 221

9.4.4  获取数据 221

9.4.5  删除数据 223

9.5  HBase设计原理 224

9.5.1  Region 224

9.5.2  定位数据 225

9.5.3  数据存储模型 226

9.5.4  快速写的秘密 227

9.5.5  快速读的秘密 228

9.5.6  合并StoreFile 229

9.5.7  Region拆分与合并 229

9.5.8  故障恢复 230

9.5.9  总结 231

9.6  HBase应用编程 232

9.6.1  Java API访问HBase 232

9.6.2  使用扫描过滤器 238

9.6.3  MapReduce访问HBase表 239

9.7  总结 245

后记 246
点击展开 点击收起

   相关推荐   

—  没有更多了  —

以下为对购买帮助不大的评价

此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP