• 计算方法
图书条目标准图
21年品牌 40万+商家 超1.5亿件商品

计算方法

正版二手,均有笔记不影响使用,无赠品、光盘、MP3等。如需购买套装书,请联系客服核实,批量上传数据有误差,默认一本,套装书售后运费自理,还请见谅!

5 3.3折 15 八五品

库存30件

山东枣庄
认证卖家担保交易快速发货售后保障

作者高尚 著

出版社西安电子科技大学出版社

出版时间2009-06

版次1

装帧平装

货号9787560622453

上书时间2024-11-08

必过书城

四年老店
已实名 已认证 进店 收藏店铺

   商品详情   

品相描述:八五品
图书标准信息
  • 作者 高尚 著
  • 出版社 西安电子科技大学出版社
  • 出版时间 2009-06
  • 版次 1
  • ISBN 9787560622453
  • 定价 15.00元
  • 装帧 平装
  • 开本 16开
  • 纸张 胶版纸
  • 页数 162页
  • 正文语种 简体中文
  • 丛书 高等学校计算机专业“十一五”规划教材
【内容简介】
《计算方法》着重介绍了工程计算中常用的数值计算方法,包括函数插值与曲线拟合、数值积分与数值微分、常微分方程数值解法、有限元法、非线性方程的数值解法、线性方程组的直接解法和迭代解法等方面的基础知识。书中注重实例介绍,每章均安排一个实例,同时对各种算法均配有适当的习题,习题类型包括填空、选择和计算证明,书末附有习题的参考答案,同时给出两份自测题及参考答案。《计算方法》力求概念叙述清晰准确,通俗易懂,删除了部分比较繁琐的理论证明。为加强计算方法课程的实践性环节,附录部分给出了实验指导,同时给出了实验效果示意图。
《计算方法》可作为高等院校理工科计算机、机械类及电子信息类专业本科教材,也可供从事科学与工程计算的科技工作者和研究人员参考。
【目录】
第1章引论
1.1算法
1.1.1研究算法的意义
1.1.2算法
1.1.3多项式求值的秦九韶方法
1.1.4方程求根的二分法
1.2误差
1.2.1误差分析
1.2.2误差的来源
1.2.3误差限和有效数字
1.2.4相对误差限与有效数字的联系
1.2.5数值计算中应注意的几个原则
1.2.6算法的评价标准
习题一

第2章插值方法
2.1泰勒插值
2.2拉格朗日插值公式
2.2.1拉格朗日插值待定系数方法
2.2.2拉格朗日插值计算公式
2.2.3拉格朗日插值余项公式
2.3牛顿插值公式
2.3.1差商及其性质
2.3.2差商形式的插值公式
2.4埃尔米特(Hermite)插值
2.5分段插值
2.5.1高次插值的龙格现象
2.5.2分段插值方法
2.6样条函数
2.6.1样条函数的概念
2.6.2三次样条插值
2.7曲线拟合的最小二乘法
2.7.1直线拟合
2.7.2多项式拟合
2.7.3一点注记
2.8实例——冶炼钢中含碳量与时间模型
习题二

第3章数值积分
3.1机械求积
3.1.1数值求积的基本思想
3.1.2代数精度的概念
3.1.3插值型的求积公式
3.2牛顿一柯特斯公式
3.2.1公式的导出
3.2.2几种低阶求积公式的代数精度
3.2.3几种低阶求积公式的余项
3.2.4复化求积法
3.3龙贝格算法
3.3.1梯形法的递推化
3.3.2龙贝格算法
3.4高斯公式
3.4.1高精度求积公式
3.4.2高斯点的基本特征
3.4.3勒让德多项式
3.5数值微分
3.5.1l一点方法
3.5.2插值型的求导公式
3.6实例——计算人造卫星的轨道周长
习题三

第4章常微分方程数值解
4.1引言
4.2欧拉法
4.2.1欧拉公式
4.2.2隐式欧拉法
4.2.3两步欧拉法
4.3改进的欧拉法
4.3.1梯形法
4.3.2改进欧拉公式
4.4龙格一库塔法
4.4.1龙格一库塔法的基本思想
4.4.2二阶龙格一库塔法
4.4.3三阶龙格一库塔法
4.4.4四阶龙格一库塔法
4.5线性多步法
4.5.1线性多步法的构造
4.5.2Adams预报校正公式
4.61收敛性与稳定性
4.6.1收敛性
4.6.2稳定性
4.7方程组与高阶方程的情形
4.7.1一阶方程组
4.7.2化高阶方程为一阶方程组
4.7.3一点注记
4.8实例——捕食者和被捕食者模型
习题四

第5章有限元法
5.1边值问题的变分形式
5.1.1二次泛函的极值
5.1.2边值问题转化为变分问题
5.2瑞兹一伽略金方法
5.3有限元法
5.3.1从瑞兹法出发进行推导
5.3.2从伽略金法出发进行推导
5.4实例介绍
习题五

第6章非线性方程的数值解法
6.1迭代原理
6.1.1迭代法基本思想
6.1.2迭代过程的收敛性
6.1.3迭代过程的收敛速度
6.2迭代过程的加速
6.2.1迭代公式的加工
6.2.2埃特金算法
6.3牛顿法
6.3.1公式导出
6.3.2应用举例
6.3.3牛顿下山法
6.4弦截法
6.5实例——悬链线方程的参数确定问题
习题六

第7章线性方程组的数值解法
7.1迭代法
7.1.1雅可比迭代法
7.1.2高斯一赛德尔迭代法
7.1.3超松弛迭代法
7.1.4迭代公式的矩阵表示
7.2向量和矩阵的范数
7.2.1向量的范数
7.2.2矩阵的范数
7.2.3矩阵的谱半径
7.3迭代过程的收敛性
7.3.1迭代收敛的充分条件
7.3.2对角占优方程组
7.4消去法
7.4.1约当消去法
7.4.2高斯消去法
7.4.3选主元法
7.5追赶法
7.5.1三对角方程组
7.5.2追赶法的计算公式
7.5.3追赶法的代数基础
7.6误差分析
7.6.1方程组的病态
7.6.2精度分析
7.7实例——小行星轨道问题
习题七
自测题一
自测题二
参考答案
附录实验指导
实验一插值法
实验二数值积分
实验三常微分方程
实验四方程求根
实验五线性方程组的解法
参考文献
点击展开 点击收起

—  没有更多了  —

以下为对购买帮助不大的评价

此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP