TensorFlow2.0深度学习从零开始学
全新正版 假一赔十 可开发票
¥
48.88
7.1折
¥
69
全新
库存4件
作者王晓华
出版社清华大学出版社
ISBN9787302552734
出版时间2020-06
装帧平装
开本16开
定价69元
货号1202064790
上书时间2025-01-01
商品详情
- 品相描述:全新
- 商品描述
-
作者简介
王晓华,计算机专业讲师,长期讲授面向对象程序设计、数据结构、Hadoop程序设计等研究生和本科生相关课程;主研方向为云计算、数据挖掘;曾主持和参与多项国家和省级科研课题,独立科研项目获省级成果认定,发表过多篇论文,拥有一项;著有《Spark MLlib机器学习实践》《TensorFlow深度学习应用实践》《OpenCV+TensorFlow深度学习与计算机视觉实战》等图书。
目录
章 TensorFlow 2.0的安装
1.1 Python基本安装和用法
1.1.1 Anaconda的下载与安装
1.1.2 Python编译器PyCharm的安装
1.1.3 使用Python计算softmax函数
1.2 TensorFlow 2.0GPU版本的安装
1.2.1 检测Anaconda中的TensorFlow版本
1.2.2 TensorFlow 2.0GPU版本基础显卡推荐和前置软件安装
1.3 Hello TensorFlow 2.0
1.4 本章小结
第2章 TensorFlow 2.0令人期待的变化
2.1 新的架构、新的运行、新的开始
2.1.1 API精简
2.1.2 Eager Execution
2.1.3 取消全局变量
2.1.4 使用函数而不是会话
2.1.5 弃用collection
2.2 配角转成主角:从TensorFlow Eager Execution转正谈起
2.2.1 Eager简介与调用
2.2.2 读取数据
2.3 使用TensorFlow 2.0模式进行线性回归的一个简单例子
2.3.1 模型的工具与数据的生成
2.3.2 模型的定义
2.3.3 损失函数的定义
2.3.4 梯度函数的更新计算
2.4 TensorFlow 2.0进阶——AutoGraph和tf.function
2.5 本章小结
第3章 TensorFlow 和 Keras
3.1 模型!模型!模型!还是模型
3.2 使用Keras API实现鸢尾花分类的例子(顺序模式)
3.2.1 数据的准备
3.2.2 数据的处理
3.2.3 梯度更新函数的写法
3.2.4 使用Keras 函数式编程实现鸢尾花分类的例子(重点)
3.2.5 使用保存的Keras模式对模型进行复用
3.2.6 使用TensorFlow 2.0标准化编译对iris模型进行拟合
3.3 多输入单一输出TensorFlow 2.0编译方法(选学)
3.3.1 数据的获取与处理
3.3.2 模型的建立
3.3.3 数据的组合
3.4 多输入多输出TensorFlow 2.0编译方法(选学)
3.5 全连接层详解
3.5.1 全连接层的定义与实现
3.5.2 使用TensorFlow 2.0自带的API实现全连接层
3.5.3 打印显示TensorFlow 2.0设计的模型结构和参数
3.6 本章小结
第4章 TensorFlow 2.0语法基础
4.1 BP神经网络简介
4.2 BP神经网络的两个基础算法
4.2.1 最小二乘法(LS算法)
4.2.2 道士下山的故事——梯度下降算法
4.3 反馈神经网络反向传播算法
4.3.1 深度学习基础
4.3.2 链式求导法则
4.3.3 反馈神经网络原理与公式推导
4.3.4 反馈神经网络原理的激活函数
4.3.5 反馈神经网络原理的Python实现
4.4 本章小结
第5章 卷积层与MNIST实战
5.1 卷积运算
5.1.1 卷积运算的基本概念
5.1.2 TensorFlow 2.0中卷积函数的实现
5.1.3 池化运算
5.1.4 softmax激活函数
5.1.5 卷积神经网络原理
5.2 TensorFlow 2.0编程实战:MNIST手写体识别
5.2.1 MNIST数据集
5.2.2 MNIST数据集特征和标注
5.2.3 TensorFlow 2.0编程实战:MNIST数据集
5.2.4 使用自定义的卷积层实现MNIST识别
5.3 本章小结
第6章 TensorFlow 2.0 Dataset 使用详解
6.1 Dataset API基本结构和内容
6.1.1 Dataset API数据种类
6.1.2 Dataset API基础使用
6.2 Dataset API不错用法
6.2.1 Dataset API数据转换方法
6.2.2 读取图片数据集的例子
6.3 使用TFRecord API创建和使用数据集
6.3.1 TFRecord的基本概念
6.3.2 TFRecord的创建
6.3.3 TFRecord的读取
6.4 TFRecord实战:带有处理模型的完整例子
6.4.1 创建数据集
6.4.2 创建解析函数
6.4.3 创建数据模型
6.4.4 创建读取函数
6.5 本章小结
第7章 TensorFlow Datasets和TensorBoard详解
7.1 TensorFlow Datasets简介
7.1.1 Datasets 数据集的安装
7.1.2 Datasets 数据集的使用
7.2 Datasets数据集的使用——FashionMNIST
7.2.1 FashionMNIST数据集下载与显示
7.2.2 模型的建立与训练
7.3 使用Keras对FashionMNIST数据集进行处理
7.3.1 获取数据集
7.3.2 数据集的调整
7.3.3 使用Python类函数建立模型
7.3.4 模型的查看和参数的打印
7.3.5 模型的训练和评估
7.4 使用TensorBoard可视化训练过程
7.4.1 TensorBoard的文件夹设置
7.4.2 显式地调用TensorBoard
7.4.3 使用TensorBoard
7.5 本章小结
第8章 从冠军开始:ResNet
8.1 ResNet基础原理与程序设计基础
8.1.1 ResNet诞生的背景
8.1.2 模块工具的TensorFlow实现——不要重复发明轮子
8.1.3 TensorFlow不错模块layers的用法
8.2 ResNet实战:CIFAR-100数据集分类
8.2.1 CIFAR-100数据集
8.2.2 ResNet残差模块的实现
8.2.3 ResNet网络的实现
8.2.4 使用ResNet对CIFAR-100数据集进行分类
8.3 ResNet的兄弟——ResNeXt
8.3.1 ResNeXt诞生的背景
……
第9章 注意力机制
0章 卷积神经网络实战:识文断字也可以
内容摘要
随着人工智能的发展以及TensorFlow在人工智能方面的火热应用,越来越多的大学逐步开设深度学习和人工智能课程。本书既是一本为读者量身定制的TensorFlow 2.0入门教材,也是针对需要学习TensorFlow 2.0新内容的读者提供的基础与进阶知识的深入型教材。本书分为10章,主要内容包括TensorFlow 2.0开发环境、TensorFlow 2.0新特性、TensorFlow与Keras的使用、TensorFlow 2.0语法基础、卷积层详解与MNIST实战、Dataset使用详解、TensorFlow Datasets和TensorBoard详解、ResNet及其实战、注意力机制、卷积神经网络实战。本书内容详尽、示例丰富,是广大对TensorFlow 2.0感兴趣的读者推荐的参考书,同时也很好适合大中专院校师生学习阅读,还可作为高等院校计算机及相关专业的教材使用。
主编推荐
"1. 介绍全面,讲解详尽
本书全面地讲解TensorFlow 2.0的新框架设计思想和模型的编写,详细介绍TensorFlow 2.0的安装、使用以及TensorFlow 2.0官方所推荐的Keras编程方法与技巧等。
2. 作者经验丰富,代码编写细腻
本书的代码编写由低到高,针对各个环节都有详尽的说明,使得读者能够充分了解和掌握代码各个模块的编写方法和技巧,是一本很好好的TensorFlow 2.0学习教程。
作者是长期奋战在科研和工业界的一线算法设计和程序编写人员,实战经验丰富,对代码中可能会出现的各种问题和“坑”有丰富的处理经验,能够使得读者少走很多弯路。
3. 理论扎实,深入浅出
在代码设计的基础上,本书还深入浅出地介绍深度学习需要掌握的一些基本理论知识,通过大量的公式与图示结合的方式对理论进行介绍。
4. 提供完善的技术支持和售后服务
本书提供了专门的技术支持邮箱:booksaga@163.com。读者在阅读本书过程中有任何疑问都可以通过该邮箱获得帮助。
"
— 没有更多了 —
以下为对购买帮助不大的评价