数据科学优化方法
全新正版 假一赔十 可开发票
¥
38.68
7.9折
¥
49
全新
库存9件
作者孙怡帆
出版社中国人民大学出版社
ISBN9787300316703
出版时间2023-10
装帧平装
开本16开
定价49元
货号1203127321
上书时间2024-12-18
商品详情
- 品相描述:全新
- 商品描述
-
目录
第1章导论
1.1本书考虑的很优化问题
1.2优化方法的特点和要求
1.3本书主要内容
第2章无约束优化方法基础
2.1很优性条件
2.2方法框架
2.3收敛准则
第2章习题
第3章线搜索方法
3.1准确线搜索方法
3.2准确线搜索方法的收敛性
3.3非准确线搜索方法
3.4非准确线搜索方法的收敛性
第3章习题
第4章负梯度方法
……
内容摘要
首先,本书在内容选择上坚持“经典”与“前沿”并重。一方面,系统全面地讲述了无约束和有约束很优化问题的常用求解方法,包括负梯度方法、牛顿方法、拟牛顿方法、共轭梯度方法、罚函数方法等。另一方面,加入近几年在数据科学领域受到广泛关注的一些新型一阶很优化方法,例如随机梯度下降方法、小批量随机梯度下降、动量方法、Nesterov加速梯度方法、Adam方法等。特别地,本书着重讲述了在数据科学中广泛使用的正则很优化问题,并介绍其求解方法,包括坐标下降方法、近端方法和交替方向乘子方法。其次,本书注重理论和实践相结合。主要的很优化方法均配有详细例子加以解释和阐述,并在章的最后一节进行数值实验,通过几个典型的很优化问题展示很优化方法的实际数值表现,有助于读者对方法性能建立起直观感受。
— 没有更多了 —
以下为对购买帮助不大的评价