深度学习与TensorFlow实践
全新正版 假一赔十 可开发票
¥
57.09
7.2折
¥
79
全新
仅1件
作者张玉宏
出版社电子工业出版社
ISBN9787121401992
出版时间2021-01
装帧平装
开本16开
定价79元
货号1202199089
上书时间2024-12-13
商品详情
- 品相描述:全新
- 商品描述
-
作者简介
张玉宏,2012年博士毕业于电子科技大学,大数据分析师(不错),2009年-2011年美国西北大学访问学者,2019年-2020年美国IUPUI不错访问学者,YOCSEF郑州2018年-2020年度副主席,现执教于河南工业大学,主要研究方向为人工智能、技术哲学等,发表学术论文30余篇,先后出版《Python极简讲义》《深度学习之美》等科技图书10余部,参编英文学术专著2部。
目录
第1章深度学习导论
1.1从人工智能到深度学习
1.1.1从感知机到深度学习
1.1.2深度学习的巨大影响
1.2从学习到机器学习
1.2.1什么是学习
1.2.2什么是机器学习
1.2.3机器学习的4个象限
1.3深度学习的内涵
1.3.1什么是深度学习
1.3.2生活中的深度学习
1.3.3有没有浅度学习
1.4本章小结
1.5思考与习题
参考资料
第2章神经网络学习
2.1人工神经网络的定义
2.2神经网络的原子单元——感知机
2.2.1感知机的形式化描述
2.2.2感知机名称的由来
2.2.3感性认识感知机
2.2.4感知机是如何学习的
2.2.5感知机训练法则
2.2.6感知机中的激活函数
2.2.7感知机的几何意义
2.2.8实战:基于Python的感知机实现
2.2.9感知机的表征能力
2.3多层前馈网络
2.3.1多层网络解决“异或”问题
2.3.2多层前馈神经网络
2.3.3机器学习本质与通用近似定理
2.3.4神经网络结构的设计
2.4神经网络中的损失函数
2.5常用的激活函数
2.5.1Sigmoid函数
2.5.2Tanh函数
2.5.3ReLU函数
2.6实战:利用sklearn搭建多层神经网络
2.6.1sklearn简介
2.6.2sklearn的安装
2.6.3sklearn搭建多层神经网络实现红酒分类
2.7本章小结
2.8思考与习题
参考资料
第3章初识TensorFlow
3.1TensorFlow概述
3.2TensorFlow特征
3.3深度学习框架比较
3.3.1Theano
3.3.2Keras
3.3.3Caffe
3.3.4PyTorch
3.4利用Anaconda安装TensorFlow
3.4.1Anaconda的下载与安装
3.4.2验证Python是否安装成功
3.4.3利用conda安装TensorFlow
3.5运行“HelloWorld!”版的TensorFlow程序
3.5.1利用TensorFlow2编写的第二个程序
3.5.2TensorFlow2的新特性
3.6本章小结
3.7思考与提高
参考资料
第4章TensorFlow基础语法
4.1TensorFlow的张量思维
4.1.1张量的阶
4.1.2张量的尺寸
4.2TensorFlow中的数据类型
4.2.1Python基本数据类型与TensorFlow的关系
4.2.2数值类型
4.2.3字符串类型
4.2.4布尔类型
4.2.5张量类型转换
4.2.6TensorFlow中的张量与NumPy数组
4.3TensorFlow中的常量与变量
4.3.1constant常量
4.3.2Variable变量
4.4常用张量生成方法
4.4.1生成全0的张量
4.4.2生成全1的张量
4.4.3生成全为给定值的张量
4.4.4生成已知分布的随机数张量
4.4.5创建特定张量序列
4.5张量的索引和切片
4.5.1索引
4.5.2通过切片访问
4.6张量的维度伸缩与交换
4.6.1张量中的轴方向
4.6.2张量维度的增加与删除
4.7张量的合并、分割与复制
4.7.1张量合并
4.7.2张量分割
4.8TensorFlow中的计算
4.8.1按元素计算
4.8.2张量的按轴计算
4.9张量的广播机制
4.9.1广播的定义
4.9.2广播的操作与适用规则
4.10张量在神经网络中的典型应用
4.10.1标量
4.10.2向量
4.10.3矩阵
4.10.4三维张量
4.10.5四维张量
4.10.6五维张量
4.11本章小结
4.12思考与练习
参考资料
第5章BP算法与优化方法
5.1为何需要优化函数
5.1.1优化的意义
5.1.2优化函数的流程
5.2基于梯度的优化算法
5.2.1什么是梯度
5.2.2梯度的代码实现
5.2.3梯度递减
5.2.4批量梯度递减法
5.2.5随机梯度递减法
5.2.6小批量梯度递减法
5.2.7实战:基于梯度递减的线性回归算法
5.2.8基于梯度递减优化算法的挑战
5.3BP算法
5.3.1BP算法的发展历程
5.3.2正向传播信息
5.3.3求导中的链式法则
5.3.4误差反向传播
5.3.5实战:利用BP算法解决异或问题
5.4TensorFlow中的其他优化算法
5.5本章小结
5.6思考与习题
参考资料
第6章Keras模块的使用
6.1Keras与tf.keras模块
6.2数据的加载
6.2.1TensorFlow的经典数据集
6.2.2Dataset对象
6.3Dataset的变换
6.3.1随机打散
6.3.2设置批大小
6.3.3数据映射
6.3.4循环训练
6.4实战:基于梯度递减的手写数字识别MNIST
6.4.1MNIST数据集简介
6.4.2MNIST数据的获取
6.4.3手写识别任务的分类模型
6.4.4Softmax回归模型
6.4.5手写数字识别MNIST中的Softmax回归模型
6.4.6TensorFlow中搭建模型的三种方式
6.4.7常用的序贯模型
6.4.8利用tf.keras进行模型搭建
6.4.9利用梯度递减算法构建模型
6.4.10损失函数的交叉熵模型
6.4.11tf.keras中的模型编译
6.4.12模型的训练与预测
6.4.13训练模型的保存与读取
6.5本章小结
6.6思考与练习
参考资料
第7章卷积神经网络
7.1概述
7.1.1前馈神经网络的问题所在
7.1.2卷积神经网络的生物学启示
7.1.3卷积神经网络的发展历程
7.1.4深度学习的“端到端”范式
7.2卷积神经网络的概念
7.2.1卷积的数学定义
7.2.2生活中的卷积
7.3图像处理中的卷积
7.3.1计算机“视界”中的图像
7.3.2卷积运算
7.3.3卷积在图像处理中的应用
7.4卷积神经网络的结构
7.5卷积层要义
7.5.1卷积层的局部连接
7.5.2卷积核深度
7.5.3步幅
7.5.4填充
7.5.5权值共享
7.6激活层
7.7池化层
7.8全连接层
7.9防止过拟合的Dropout机制
7.10经典的卷积神经网络结构
7.10.1LeNet-5
7.10.2AlexNet
7.10.3VGGNet
7.11实战:基于卷积神经网络的手写数字识别
7.11.1数据读取
7.11.2搭建模型
7.11.3模型训练
7.11.4可视化展现TensorBoard
7.11.5模型预测
7.12本章小结
7.13思考与练习
参考资料
第8章循环神经网络与LSTM
8.1标准神经网络的缺点
8.2循序神经网络的发展历程
8.2.1Hopfield网络
8.2.2Jordan循环神经网络
8.2.3Elman循环神经网络
8.2.4RNN的应用领域
8.3RNN的理论基础
8.3.1RNN的形式化定义
8.3.2循环神经网络的生物学机理
8.4常见的RNN拓扑结构
8.4.1one-to-one
8.4.2one-to-many
8.4.3many-to-one
8.4.4many-to-many
8.5RNN的训练
8.5.1单向RNN建模
8.5.2双向RNN建模
8.5.3确定优化目标函数
8.5.4参数求解与BPTT
8.6LSTM的来历
8.7拆解LSTM
8.7.1改造的神经元
8.7.2遗忘门
8.7.3输入门
8.7.4调节门
8.7.5输出门
8.7.6LSTM的部件功能
8.7.7GRU优化
8.8LSTM的训练流程
8.9自然语言处理的假说
8.10词向量表示方法
8.10.1独热编码表示
8.10.2分布式表示
8.10.3词嵌入表示
8.11基于RNN的语言模型
8.12实战:基于RNN的文本情感分类问题
8.12.1数据读取
8.12.2感性认知数据
8.12.3数据预处理
8.12.4搭建简易RNN
8.12.5基于LSTM的优化
8.12.6基于GRU的优化
8.13本章小结
8.14思考与练习
参考资料
内容摘要
深度学习是人工智能的前沿技术。本书深入浅出地介绍了深度学习的相关理论和TensorFlow实践,全书共8章。章给出了深度学习的基本概况。第2章详细介绍了神经网络相关知识,内容包括M-P神经元模型、感知机、多层神经网络。第3章介绍了被广泛认可的深度学习框架TensorFlow2的安装流程与新特性。第4章详细介绍了TensorFlow2的相关语法。第5章介绍了BP算法和常见的优化方法。第6章介绍了Keras模块的使用。第7章和第8章详细讲解了卷积神经网络和循环神经网络,并给出了相关的实战项目。本书结构完整、行文流畅,是一本零基础入门、通俗易懂、图文并茂、理论结合实战的深度学习书籍。对于计算机、人工智能及相关专业的本科生和研究生,这是一本适合入门与系统学习的教材;对于从事深度学习产品研发的工程技术人员,本书也有一定的参考价值。
— 没有更多了 —
以下为对购买帮助不大的评价