• 胸有成竹数据分析的SASEG进阶
21年品牌 40万+商家 超1.5亿件商品

胸有成竹数据分析的SASEG进阶

所有书籍以实拍图为准,所见即所得,当天下午三点之前订单当天都能发货

1.96 九品

仅1件

河北保定
认证卖家担保交易快速发货售后保障

作者常国珍 著;人大经济论坛 编

出版社电子工业出版社

出版时间2015-02

版次1

装帧平装

上书时间2024-09-26

何日君再来

四年老店
已实名 已认证 进店 收藏店铺

   商品详情   

品相描述:九品
图书标准信息
  • 作者 常国珍 著;人大经济论坛 编
  • 出版社 电子工业出版社
  • 出版时间 2015-02
  • 版次 1
  • ISBN 9787121252433
  • 定价 49.00元
  • 装帧 平装
  • 开本 16开
  • 纸张 胶版纸
  • 页数 171页
  • 字数 295千字
  • 正文语种 简体中文
  • 丛书 CDA数据分析师系列丛书
【内容简介】

  CDA数据分析师系列丛书按照数据分析师规范化学习体系而定,对于一名初学者,应该先掌握必要的概率、统计理论基础,包括描述性分析,推断性分析,参数估计,假设检验,方差分析,回归分析等内容,这在《从零进阶!数据分析的统计基础》中进行了专业详细的讲解。其次,数据分析需要按照标准流程进行,即数据的获取、储存、整理、清洗、归约等系列数据处理技术,这在《如虎添翼!数据处理的SASEG实现》中利用SASEG和编程技术进行了操作过程的详解。经过处理的数据需要根据业务问题,利用相关方法进行建模分析,得出结果,结果检验,绘制图表并解读数据,这在《CDA数据分析师系列丛书:胸有成竹!数据分析的SASEG进阶》中进行了详细的讲解和操作分析。
  CDA数据分析师丛书整体风格是“理论>技术>应用”的一个学习过程,目的在于商业业务应用、职场数据分析,为欲从事于数据分析领域的各界人士提供了一个规范化数据分析师的学习体系。



【作者简介】
  人大经济论坛(bbs.pinggu.org),于2003年成立,致力于推动经管学科的进步,传播出色教育资源,目前已经发展成为国内很大的经济、管理、金融、统计类的在线教育和咨询网站,也是国内活跃和具影响力的经管类网络社区。
  人大经济论坛从2006年起在国内较早开展数据分析培训,累计培训学员数万人,在大数据的趋势背景下,作为CertifiedDataAnalystInstitute(注册数据分析师协会,简称CDA协会)的中国授权中心,根据CDA协会的数据分析师LevelⅠ(业务分析师)、LevelⅡ(建模分析师)、LevelⅢ(数据专家)的等级标准,致力于培养正规化、科学化、专业化的数据分析师队伍,为企事业单位输送更多出色数据分析人才。(CertifiedDataAnalystInstitute,亦称“注册数据分析师协会”,成立于美国特拉华州,主要宗旨为汇聚国际先进的数据分析技术,建设国际性规范化数据分析师职业标准,推进数据分析师的行业发展及认证工作,目前标准行业认证为CDA数据分析师)

  常国珍,北京大学光华管理学院会计学在读博士生,北京大学人口研究所社会学硕士,河北联合大学土木工程专业学士。德勤管理咨询公司兼职咨询顾问,SAS专业培训讲师。曾以数据挖掘工程师身份就职于亚信科技(中国)有限公司市场部。具有八年的数据挖掘实战经验,主要从事电信和银行业数据挖掘工作。项目涉及客户精准营销、信用评估、欺诈侦测和流失预警等,尤其熟悉银行个人客户精准营销的建模工作。
【目录】
第1章数据分析方法概述
1.1数据分析概述
1.1.1数据分析过程
1.1.2数据分析的商业驱动
1.2数据分析与挖掘方法分类介绍
1.2.1描述性——无监督的学习
1.2.2预测性——有监督的学习
1.3数据分析的方法论
1.3.1数据挖掘的项目管理方法论:CRISP-DM
1.3.2数据整理与建模的方法论:SEMMA
1.3.3SASEG任务菜单编排与SEMMA之间的关系

第2章描述数据特征
2.1认识数据类型
2.2单变量描述统计方法
2.2.1分类变量的描述
2.2.2连续变量的描述
2.3创建频数报表
2.4生成汇总统计量
2.5用汇总表任务生成汇总报表
2.6绘制条形图
2.7绘制地图

第3章描述性数据分析/挖掘方法
3.1客户细分方法介绍
3.1.1客户细分的意义
3.1.2根据客户利润贡献进行划分
3.1.3根据个人或公司的生命历程进行划分
3.1.4根据客户的产品偏好进行划分
3.1.5根据客户交易/消费行为进行划分
3.1.6根据客户的多维行为属性细分
3.1.7展现客户/产品结构的战略细分
3.1.8客户细分:综合运用
3.2连续变量间关系探索与变量约减
3.2.1多元统计基础
3.2.2多元变量压缩的思路
3.2.3主成分分析
3.2.4因子分析
3.3聚类分析
3.3.1基本逻辑
3.3.2系统聚类
3.3.3快速聚类

第4章预测性数据分析方法
4.1构造对连续变量的预测模型
4.1.1方差分析(ANOVA)
4.1.2线性回归
4.1.3线性回归的模型诊断
4.2构造对二分类变量的预测模型
4.2.1分类变量之间的相关性检验
4.2.2逻辑回归
4.3数据挖掘流程及示例

第5章时间序列
5.1认识时间序列和趋势分解法
5.2平稳时间序列(ARMA)模型设定与识别
5.2.1平稳时间序列定义
5.2.2平稳时间序列模型建模
5.2.3ARMA的模型设定与识别
5.3非平稳时间序列(ARIMA)模型
5.4时间序列建模步骤

附录A数据说明
附录BCDA(注册数据分析师)致力于最好的数据分析人才建设
参考文献
点击展开 点击收起

—  没有更多了  —

以下为对购买帮助不大的评价

此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP