全新正版 面向资产管理者的机器学习 (西)马科斯·M.洛佩斯·德普拉多 9787111699484 机械工业出版社
本店所售图书,保证正版新书,有个别图片和实书封面不一样,以实书封面为准,最快当天,一般隔天发货。支持7天无理由退换货.开票联系客服
¥
45.44
5.2折
¥
88
全新
库存2件
作者(西)马科斯·M.洛佩斯·德普拉多
出版社机械工业出版社
ISBN9787111699484
出版时间2022-01
装帧精装
开本16开
定价88元
货号31371714
上书时间2024-07-04
商品详情
- 品相描述:全新
- 商品描述
-
目录
中文版序
1 引 言
1.1 动机
1.2 理论很重要
1.3 如何科学地运用机器学习
1.4 过拟合的两种类型
1.5 提纲
1.6 受众
1.7 关于金融机器学习的五个常见误解
1.8 金融研究的未来
1.9 常见问题
1.10 结论
1.11 习题
2 降噪和降调
2.1 动机
2.2 Marcenko-Pastur定理
2.3 带信号的随机矩阵
2.4 拟合Marcenko-Pastur分布
2.5 降噪
2.6 降调
2.7 实验结果
2.8 结论
2.9 习题
3 距离度量
3.1 动机
3.2 基于相关性的度量
3.3 边际熵和联合熵
3.4 条件熵
3.5 Kullback-Leibler散度
3.6 交叉熵
3.7 互信息
3.8 差异信息
3.9 离散化
3.10 两个划分之间的距离
3.11 实验结果
3.12 结论
3.13 习题
4 最优聚类
4.1 动机
4.2 相似度矩阵
4.3 聚类的类型
4.4 类集的个数
4.5 实验结果
4.6 结论
4.7 习题
5 金融标注
5.1 动机
5.2 固定区间法
5.3 三重阻碍法
5.4 趋势扫描法
5.5 元标注
5.6 实验结果
5.7 结论
5.8 习题
6 特征重要性分析
6.1 动机
6.2 p值
6.3 变量重要性
6.4 概率加权准确度
6.5 替代效应
6.6 实验结果
6.7 结论
6.8 习题
7 组合构建
7.1 动机
7.2 凸组合优化
7.3 条件数
7.4 Markowitz的诅咒
7.5 信号作为协方差不稳定性的来源
7.6 嵌套聚类优化算法
7.7 实验结果
7.8 结论
7.9 习题
8 测试集过拟合
8.1 动机
8.2 查准率和召回率
8.3 重复测试下的查准率和召回率
8.4 夏普比率
8.5 错误策略定理
8.6 实验结果
8.7 收缩夏普比率
8.8 家族错误率
8.9 结论
8.10 习题
附录A 合成数据测试
附录B 错误策略定理的证明
参考书目
参考文献
内容摘要
本书面向广大资产管理者和各类研究人员,基于机器学习和人工智能,指明从一个投资理念和理论到成功的投资策略具体实施的量化途径。作者认为一个缺乏理论依据的投资策略很可能是错误的。为此,资产管理者应致力于发展理论,而不仅是回测潜在的交易规则。本书就是从帮助资产管理者发现经济和金融理论的角度出发,介绍机器学习的工具。机器学习不是一个黑匣子,也不一定会过拟合。机器学习的工具与经典统计方法是互补关系而不是替代关系。本书认为机器学习的一些优点包括:注重样本外的可预测性,而不是样本内的方差判断;使用计算方法避免依赖一些(或许不切实际的)假设;能够“学习”复杂的规范,包括高维空间中的非线性、分层和非连续的交互效应;能够将变量搜索与设定搜索分离,并能很好地防止多重线性和其他替代效应。
— 没有更多了 —
以下为对购买帮助不大的评价