• Python量化交易:策略、技巧与实战
21年品牌 40万+商家 超1.5亿件商品

Python量化交易:策略、技巧与实战

本店所售图书,保证正版新书,有个别图片和实书封面不一样,以实书封面为准,最快当天,一般隔天发货。支持7天无理由退换货.开票联系客服

71.13 7.2折 99 全新

库存2件

北京西城
认证卖家担保交易快速发货售后保障

作者张彦桥 著

出版社电子工业出版社

出版时间2019-08

版次1

装帧平装

货号30686124

上书时间2023-12-15

剡溪书局

四年老店
已实名 已认证 进店 收藏店铺

   商品详情   

品相描述:全新
商品描述
目录
目    录
第1章  量化交易概述1
1.1  初识量化交易2
1.1.1  什么是量化交易2
1.1.2  量化交易与算法交易2
1.1.3  量化交易与程序化交易2
1.1.4  量化交易与技术分析3
1.1.5  量化交易与人工交易3
1.1.6  为什么要学习量化交易4
1.2  量化交易的特点5
1.3  量化交易的应用6
1.3.1  投资品种选择7
1.3.2  投资时机选择7
1.3.3  算法交易7
1.3.4  各种套利交易9
1.3.5  资产配置10
1.4  量化交易的故事11
1.4.1  朱尔斯·雷格纳特的量化交易故事11
1.4.2  爱德华·索普的量化交易故事12
1.4.3  詹姆斯·西蒙斯的量化交易故事13
1.5  量化交易的历史14
1.5.1  国外量化交易的历史14
1.5.2  国内量化交易的历史15
1.6  量化交易的注意事项15
第2章  量化交易平台17
2.1  初识JoinQuant聚宽量化交易平台18
2.2  量化交易平台的功能18
2.2.1  高质量数据和强大的研究平台18
2.2.2  顶级回测体验和顶尖模拟交易19
2.3  账户的注册、登录及量化交易策略的创建19
2.3.1  量化交易平台账户的注册19
2.3.2  量化交易平台账户的登录20
2.3.3  量化交易策略的创建22
2.4  量化交易策略的选股技巧24
2.4.1  量化选股的基本设置24
2.4.2  选股指标27
2.5  量化交易策略的买卖条件模型31
2.5.1  轮动模型32
2.5.2  择时模型33
2.6  量化交易策略的风险控制技巧35
2.6.1  止盈、止损指标35
2.6.2  其他指标36
2.7  量化交易策略的其他参数设置技巧36
2.8  编写Python代码来创建量化交易策略38
2.9  量化交易策略的回测39
2.10  量化交易策略的模拟交易41
2.10.1  新建模拟交易并运行41
2.10.2  查看模拟交易42
2.10.3  绑定微信45
2.11  量化交易策略的实盘交易46
第3章  Python开发环境及编程基础49
3.1  初识Python50
3.1.1  Python的发展历程50
3.1.2  Python的特点50
3.2  Python开发环境及配置51
3.2.1  Python的下载和安装51
3.2.2  Python的环境变量配置53
3.3  Python程序的编写57
3.4  利用量化交易平台编写Python程序61
3.4.1  初识IPython Notebook研究平台62
3.4.2  利用IPython Notebook编写Python程序66
3.5  Python的基本数据类型67
3.5.1  数值类型67
3.5.2  字符串69
3.6  Python的变量与赋值73
3.6.1  变量命名规则73
3.6.2  变量的赋值74
3.7  Python的基本运算74
3.7.1  算术运算75
3.7.2  赋值运算76
3.7.3  位运算77
3.8  Python的代码格式78
3.8.1  代码缩进78
3.8.2  代码注释79
3.8.3  空行80
3.8.4  同一行显示多条语句80
第4章  Python流程控制与特征数据类型81
4.1  Python的选择结构82
4.1.1  关系运算82
4.1.2  逻辑运算83
4.1.3  if语句84
4.1.4  嵌套if语句86
4.2  Python的循环结构87
4.2.1  while循环87
4.2.2  while循环使用else语句88
4.2.3  无限循环89
4.2.4  for循环90
4.2.5  在for循环中使用range()函数90
4.2.6  break语句92
4.2.7  continue语句92
4.2.8  pass语句93
4.3  Python的特征数据类型94
4.3.1  列表94
4.3.2  元组97
4.3.3  字典99
4.3.4  集合100
第5章  Python函数与面向对象104
5.1  Python内置函数105
5.1.1  数学函数105
5.1.2  随机数函数106
5.1.3  三角函数108
5.1.4  字符串函数110
5.2  用户自定义函数113
5.2.1  自定义函数的定义113
5.2.2  调用自定义函数114
5.2.3  函数的参数传递116
5.2.4  函数的参数类型118
5.2.5  匿名函数123
5.3  Python的面向对象123
5.3.1  面向对象概念124
5.3.2  类与实例124
5.3.3  模块的引用127
5.3.4  包127
5.4  变量作用域及类型130
5.4.1  变量作用域130
5.4.2  全局变量和局部变量131
5.4.3  global和nonlocal关键字132
第6章  Python量化交易策略的常用库135
6.1  Numpy库136
6.1.1  ndarray数组基础136
6.1.2  Numpy的矩阵对象148
6.2  Pandas库149
6.2.1  一维数组Series149
6.2.2  二维数组DataFrame150
6.2.3  三维数组Panel160
第7章  Python量化交易策略的常用函数与对象163
7.1  Python量化交易策略的一般结构164
7.1.1  初始化函数165
7.1.2  开盘前运行函数166
7.1.3  开盘时运行函数166
7.1.4  收盘后运行函数167
7.2  Python量化交易策略的设置函数167
7.2.1  设置基准函数168
7.2.2  设置佣金/印花税函数168
7.2.3  设置滑点函数169
7.2.4  设置动态复权(真实价格)模式函数170
7.2.5  设置成交量比例函数170
7.2.6  设置是否开启盘口撮合模式函数171
7.2.7  设置要操作的股票池函数171
7.3  Python量化交易策略的定时函数171
7.3.1  定时函数的定义及分类172
7.3.2  定时函数各项参数的意义172
7.3.3  定时函数的注意事项173
7.3.4  定时函数的实例174
7.4  Python量化交易策略的下单函数174
7.4.1  按股数下单函数174
7.4.2  目标股数下单函数175
7.4.3  按价值下单函数175
7.4.4  目标价值下单函数176
7.4.5  撤单函数176
7.4.6  获取未完成订单函数177
7.4.7  获取订单信息函数177
7.4.8  获取成交信息函数178
7.5  Python量化交易策略的日志log178
7.5.1  设定log级别178
7.5.2  log.info179
7.6  Python量化交易策略的常用对象179
7.6.1  Order对象179
7.6.2  全局对象g180
7.6.3  Trade对象180
7.6.4  tick对象180
7.6.5  Context对象181
7.6.6  Position对象182
7.6.7  SubPortfolio对象183
7.6.8  Portfolio对象184
7.6.9  SecurityUnitData对象184
第8章  Python量化交易策略的获取数据函数运用技巧186
8.1  history()函数的运用技巧187
8.1.1  各项参数的意义187
8.1.2  history()函数的应用实例188
8.2  attribute_history ()函数的运用技巧191
8.3  get_fundamentals ()函数的运用技巧192
8.3.1  各项参数的意义192
8.3.2  get_fundamentals ()函数的应用实例193
8.4  get_fundamentals_continuously ()函数的运用技巧198
8.5  get_current_data ()函数的运用技巧199
8.6  get_index_stocks ()函数的运用技巧200
8.6.1  各项参数的意义200
8.6.2  get_index_stocks ()函数的应用实例201
8.7  get_industry_stocks()函数的运用技巧202
8.8  get_concept_stocks ()函数的运用技巧203
8.9  get_all_securities()函数的运用技巧205
8.9.1  各项参数的意义205
8.9.2  get_all_securities()函数的应用实例206
8.10  get_security_info ()函数的运用技巧207
8.11  get_billboard_list ()函数的运用技巧208
8.11.1  各项参数的意义208
8.11.2  get_billboard_list()函数的应用实例209
8.12  get_locked_shares ()函数的运用技巧210
第9章  Python量化交易策略的基本面选股技巧211
9.1  量化选股概述

内容摘要
本书首先讲解量化交易的基础知识,即量化交易的定义、历史、主要内容及与传统交易的区别、JoinQuant(聚宽)量化交易平台;然后讲解量化交易开发语言Python,即讲解Python语言的开发环境、基本语法、基本流程控制、特征数据类型、函数及应用、面向对象程序设计;接着讲解如何利用Python语言编写量化策略、如何回测、编写量化策略所需要常用函数、因子分析、量化交易策略实例;最后讲解量化选股的技巧、量化择时的技巧及算法交易。在讲解过程中即考虑读者的学习习惯,又通过具体实例剖析讲解量化实际交易过程中的热点问题、关键问题及种种难题。

图书标准信息
  • 作者 张彦桥 著
  • 出版社 电子工业出版社
  • 出版时间 2019-08
  • 版次 1
  • ISBN 9787121370908
  • 定价 99.00元
  • 装帧 平装
  • 开本 16开
  • 纸张 胶版纸
  • 页数 372页
  • 字数 99999千字
【内容简介】

本书首先讲解量化交易的基础知识,即量化交易的定义、历史、主要内容及与传统交易的区别、JoinQuant(聚宽)量化交易平台;然后讲解量化交易开发语言Python,即讲解Python语言的开发环境、基本语法、基本流程控制、特征数据类型、函数及应用、面向对象程序设计;接着讲解如何利用Python语言编写量化策略、如何回测、编写量化策略所需要常用函数、因子分析、量化交易策略实例;最后讲解量化选股的技巧、量化择时的技巧及算法交易。在讲解过程中即考虑读者的学习习惯,又通过具体实例剖析讲解量化实际交易过程中的热点问题、关键问题及种种难题。

【作者简介】

张彦桥,现任青岛东胜伟业软件科技有限公司项目开发部经 理,具有8年以上Python、Java项目开发经验。精通VB、JS、PHP 、C、C#、Ruby等编 程语言,熟悉多种开源技术,喜欢GET新技能,曾带领团队完成过多个中、小型项目 开发,在量化交易、数据安全、云计算、机器学习、物联网、区块链等领域有丰富的经验。

【目录】
目 录 

第1章 量化交易概述 1 

1.1 初识量化交易 2 

1.1.1 什么是量化交易 2 

1.1.2 量化交易与算法交易 2 

1.1.3 量化交易与程序化交易 2 

1.1.4 量化交易与技术分析 3 

1.1.5 量化交易与人工交易 3 

1.1.6 为什么要学习量化交易 4 

1.2 量化交易的特点 5 

1.3 量化交易的应用 6 

1.3.1 投资品种选择 7 

1.3.2 投资时机选择 7 

1.3.3 算法交易 7 

1.3.4 各种套利交易 9 

1.3.5 资产配置 10 

1.4 量化交易的故事 11 

1.4.1 朱尔斯?雷格纳特的量化交易故事 11 

1.4.2 爱德华?索普的量化交易故事 12 

1.4.3 詹姆斯?西蒙斯的量化交易故事 13 

1.5 量化交易的历史 14 

1.5.1 国外量化交易的历史 14 

1.5.2 国内量化交易的历史 15 

1.6 量化交易的注意事项 15 

第2章 量化交易平台 17 

2.1 初识JoinQuant聚宽量化交易平台 18 

2.2 量化交易平台的功能 18 

2.2.1 高质量数据和强大的研究平台 18 

2.2.2 顶级回测体验和顶尖模拟交易 19 

2.3 账户的注册、登录及量化交易策略的创建 19 

2.3.1 量化交易平台账户的注册 19 

2.3.2 量化交易平台账户的登录 20 

2.3.3 量化交易策略的创建 22 

2.4 量化交易策略的选股技巧 24 

2.4.1 量化选股的基本设置 24 

2.4.2 选股指标 27 

2.5 量化交易策略的买卖条件模型 31 

2.5.1 轮动模型 32 

2.5.2 择时模型 33 

2.6 量化交易策略的风险控制技巧 35 

2.6.1 止盈、止损指标 35 

2.6.2 其他指标 36 

2.7 量化交易策略的其他参数设置技巧 36 

2.8 编写Python代码来创建量化交易策略 38 

2.9 量化交易策略的回测 39 

2.10 量化交易策略的模拟交易 41 

2.10.1 新建模拟交易并运行 41 

2.10.2 查看模拟交易 42 

2.10.3 绑定微信 45 

2.11 量化交易策略的实盘交易 46 

第3章 Python开发环境及编程基础 49 

3.1 初识Python 50 

3.1.1 Python的发展历程 50 

3.1.2 Python的特点 50 

3.2 Python开发环境及配置 51 

3.2.1 Python的下载和安装 51 

3.2.2 Python的环境变量配置 53 

3.3 Python程序的编写 57 

3.4 利用量化交易平台编写Python程序 61 

3.4.1 初识IPython Notebook研究平台 62 

3.4.2 利用IPython Notebook编写Python程序 66 

3.5 Python的基本数据类型 67 

3.5.1 数值类型 67 

3.5.2 字符串 69 

3.6 Python的变量与赋值 73 

3.6.1 变量命名规则 73 

3.6.2 变量的赋值 74 

3.7 Python的基本运算 74 

3.7.1 算术运算 75 

3.7.2 赋值运算 76 

3.7.3 位运算 77 

3.8 Python的代码格式 78 

3.8.1 代码缩进 78 

3.8.2 代码注释 79 

3.8.3 空行 80 

3.8.4 同一行显示多条语句 80 

第4章 Python流程控制与特征数据类型 81 

4.1 Python的选择结构 82 

4.1.1 关系运算 82 

4.1.2 逻辑运算 83 

4.1.3 if语句 84 

4.1.4 嵌套if语句 86 

4.2 Python的循环结构 87 

4.2.1 while循环 87 

4.2.2 while循环使用else语句 88 

4.2.3 无限循环 89 

4.2.4 for循环 90 

4.2.5 在for循环中使用range()函数 90 

4.2.6 break语句 92 

4.2.7 continue语句 92 

4.2.8 pass语句 93 

4.3 Python的特征数据类型 94 

4.3.1 列表 94 

4.3.2 元组 97 

4.3.3 字典 99 

4.3.4 集合 100 

第5章 Python函数与面向对象 104 

5.1 Python内置函数 105 

5.1.1 数学函数 105 

5.1.2 随机数函数 106 

5.1.3 三角函数 108 

5.1.4 字符串函数 110 

5.2 用户自定义函数 113 

5.2.1 自定义函数的定义 113 

5.2.2 调用自定义函数 114 

5.2.3 函数的参数传递 116 

5.2.4 函数的参数类型 118 

5.2.5 匿名函数 123 

5.3 Python的面向对象 123 

5.3.1 面向对象概念 124 

5.3.2 类与实例 124 

5.3.3 模块的引用 127 

5.3.4 包 127 

5.4 变量作用域及类型 130 

5.4.1 变量作用域 130 

5.4.2 全局变量和局部变量 131 

5.4.3 global和nonlocal关键字 132 

第6章 Python量化交易策略的常用库 135 

6.1 Numpy库 136 

6.1.1 ndarray数组基础 136 

6.1.2 Numpy的矩阵对象 148 

6.2 Pandas库 149 

6.2.1 一维数组Series 149 

6.2.2 二维数组DataFrame 150 

6.2.3 三维数组Panel 160 

第7章 Python量化交易策略的常用函数与对象 163 

7.1 Python量化交易策略的一般结构 164 

7.1.1 初始化函数 165 

7.1.2 开盘前运行函数 166 

7.1.3 开盘时运行函数 166 

7.1.4 收盘后运行函数 167 

7.2 Python量化交易策略的设置函数 167 

7.2.1 设置基准函数 168 

7.2.2 设置佣金/印花税函数 168 

7.2.3 设置滑点函数 169 

7.2.4 设置动态复权(真实价格)模式函数 170 

7.2.5 设置成交量比例函数 170 

7.2.6 设置是否开启盘口撮合模式函数 171 

7.2.7 设置要操作的股票池函数 171 

7.3 Python量化交易策略的定时函数 171 

7.3.1 定时函数的定义及分类 172 

7.3.2 定时函数各项参数的意义 172 

7.3.3 定时函数的注意事项 173 

7.3.4 定时函数的实例 174 

7.4 Python量化交易策略的下单函数 174 

7.4.1 按股数下单函数 174 

7.4.2 目标股数下单函数 175 

7.4.3 按价值下单函数 175 

7.4.4 目标价值下单函数 176 

7.4.5 撤单函数 176 

7.4.6 获取未完成订单函数 177 

7.4.7 获取订单信息函数 177 

7.4.8 获取成交信息函数 178 

7.5 Python量化交易策略的日志log 178 

7.5.1 设定log级别 178 

7.5.2 log.info 179 

7.6 Python量化交易策略的常用对象 179 

7.6.1 Order对象 179 

7.6.2 全局对象g 180 

7.6.3 Trade对象 180 

7.6.4 tick对象 180 

7.6.5 Context对象 181 

7.6.6 Position对象 182 

7.6.7 SubPortfolio对象 183 

7.6.8 Portfolio对象 184 

7.6.9 SecurityUnitData对象 184 

第8章 Python量化交易策略的获取数据函数运用技巧 186 

8.1 history()函数的运用技巧 187 

8.1.1 各项参数的意义 187 

8.1.2 history()函数的应用实例 188 

8.2 attribute_history ()函数的运用技巧 191 

8.3 get_fundamentals ()函数的运用技巧 192 

8.3.1 各项参数的意义 192 

8.3.2 get_fundamentals ()函数的应用实例 193 

8.4 get_fundamentals_continuously ()函数的运用技巧 198 

8.5 get_current_data ()函数的运用技巧 199 

8.6 get_index_stocks ()函数的运用技巧 200 

8.6.1 各项参数的意义 200 

8.6.2 get_index_stocks ()函数的应用实例 201 

8.7 get_industry_stocks()函数的运用技巧 202 

8.8 get_concept_stocks ()函数的运用技巧 203 

8.9 get_all_securities()函数的运用技巧 205 

8.9.1 各项参数的意义 205 

8.9.2 get_all_securities()函数的应用实例 206 

8.10 get_security_info ()函数的运用技巧 207 

8.11 get_billboard_list ()函数的运用技巧 208 

8.11.1 各项参数的意义 208 

8.11.2 get_billboard_list()函数的应用实例 209 

8.12 get_locked_shares ()函数的运用技巧 210 

第9章 Python量化交易策略的基本面选股技巧 211 

9.1 量化选股概述 212 

9.2 成长类因子选股技巧 212 

9.2.1 营业收入同比增长率选股技巧 212 

9.2.2 营业收入环比增长率选股技巧 214 

9.2.3 净利润同比增长率选股技巧 215 

9.2.4 净利润环比增长率选股技巧 216 

9.2.5 营业利润率选股技巧 217 

9.2.6 销售净利率选股技巧 217 

9.2.7 销售毛利率选股技巧 218 

9.3 规模类因子选股技巧 220 

9.3.1 总市值选股技巧 220 

9.3.2 流通市值选股技巧 221 

9.3.3 总股本选股技巧 222 

9.3.4 流通股本选股技巧 222 

9.4 价值类因子选股技巧 223 

9.4.1 市净率选股技巧 223 

9.4.2 市销率选股技巧 224 

9.4.3 市现率选股技巧 225 

9.4.4 动态市盈率选股技巧 226 

9.4.5 静态市盈率选股技巧 227 

9.5 质量类因子选股技巧 228 

9.5.1 净资产收益率选股技巧 228 

9.5.2 总资产净利率选股技巧 229 

9.6 基本面多因子量化选股 230 

第10章 Python量化交易策略的技术指标函数运用技巧 232 

10.1 量化择时概述 233 

10.2 趋向指标函数运用技巧 234 

10.2.1 MACD指标函数 234 

10.2.2 EMV指标函数 235 

10.2.3 UOS指标函数 237 

10.2.4 GDX指标函数 238 

10.2.5 DMA指标函数 239 

10.2.6 JS指标函数 240 

10.2.7 MA指标函数 241 

10.2.8 EXPMA指标函数 242 

10.2.9 VMA指标函数 243 

10.3 反趋向指标函数运用技巧 245 

10.3.1 KD指标函数 245 

10.3.2 MFI指标函数 246 

10.3.3 RSI指标函数 247 

10.3.4 OSC指标函数 248 

10.3.5 WR指标函数 249 

10.3.6 CCI指标函数 250 

10.4 压力支撑指标函数运用技巧 251 

10.4.1 BOLL指标函数 251 

10.4.2 MIKE指标函数 253 

10.4.3 XS指标函数 254 

10.5 量价指标函数运用技巧 256 

10.5.1 OBV指标函数 256 

10.5.2 VOL指标函数 257 

10.5.3 VR指标函数 258 

10.5.4 MASS指标函数 259 

第11章 Python量化交易策略的回测方法与技巧 261 

11.1 量化交易策略回测的流程 262 

11.2 利用Python编写MACD指标量化交易策略 262 

11.2.1 量化交易策略的编辑页面 262 

11.2.2 编写初始化函数 265 

11.2.3 编写单位时间调用的函数 265 

11.3 设置MACD指标量化交易策略的回测参数 266 

11.4 MACD指标量化交易策略的回测详情 269 

11.5 MACD指标量化交易策略的风险指标 272 

11.5.1 Alpha(阿尔法) 272 

11.5.2 Beta(贝塔) 273 

11.5.3 Sharpe(夏普比率) 274 

11.5.4 Sortino(索提诺比率) 275 

11.5.5 Information Ratio(信息比率) 276 

11.5.6 Volatility(策略波动率) 277 

11.5.7 Benchmark Volatility(基准波动率) 278 

11.5.8 Max Drawdown(最大回撤) 279 

第12章 Python量化交易策略的机器算法运用技巧 280 

12.1 随机森林在量化交易中的运用技巧 281 

12.1.1 随机森林的构建 281 

12.1.2 随机森林的优缺点 281 

12.1.3 随机森林在量化交易中的运用实例 282 

12.2 支持向量机(SVM)在量化交易中的运用技巧 284 

12.2.1 什么是支持向量机(SVM) 285 

12.2.2 支持向量机(SVM)的工作原理 285 

12.2.3 核函数 287 

12.2.4 支持向量机(SVM)的优点 288 

12.2.5 支持向量机(SVM)的缺点 288 

12.2.6 支持向量机(SVM)在量化交易中的运用实例 289 

12.3 朴素贝叶斯在量化交易中的运用技巧 292 

12.3.1 什么是朴素贝叶斯 292 

12.3.2 朴素贝叶斯的算法思想 292 

12.3.3 朴素贝叶斯的算法步骤 292 

12.3.4 朴素贝叶斯的优缺点 293 

12.3.5 朴素贝叶斯在量化交易中的运用实例 293 

12.4 神经网络在量化交易中的运用技巧 296 

12.4.1 什么是人工神经网络 296 

12.4.2 大脑中的神经元细胞和神经元细胞网络 297 

12.4.3 人工神经网络的基本特征 298 

12.4.4 人工神经网络的特点 299 

12.4.5 人工神经网络的算法 299 

12.4.6 人工神经网络在量化交易中的运用实例 301 

第13章 Python量化交易策略的因子分析运用技巧 305 

13.1 因子的类型及因子分析的作用 306 

13.2 因子分析的Python代码 306 

13.2.1 因子分析中的三个变量 306 

13.2.2 因子分析中可以使用的基础因子 307 

13.2.3 calc的参数及返回值 308 

13.3 因子的新建及常见分析 308 

13.3.1 因子的新建 308 

13.3.2 因子的收益分析 311 

13.3.3 因子的IC分析 314 

13.3.4 因子的换手分析 315 

13.4 因子在研究和回测中的使用 317 

13.5 基本面因子运用实例 319 

第14章 Python量化交易策略实战案例 323 

14.1 MA均线量化交易策略实战案例 324 

14.1.1 编写初始化函数 324 

14.1.2 编写单位时间调用的函数 326 

14.1.3 MA均线量化交易策略的回测 327 

14.2 多均线量化交易策略实战案例 327 

14.2.1 编写初始化函数 328 

14.2.2 编写交易程序函数 328 

14.2.3 多均线量化交易策略的回测 330 

14.3 MACD指标量化交易策略实战案例 330 

14.3.1 编写初始化函数 331 

14.3.2 编写单位时间调用的函数 331 

14.3.3 MACD指标量化交易策略的回测 332 

14.4 KD指标量化交易策略实战案例 333 

14.4.1 编写初始化函数 333 

14.4.2 编写开盘前运行函数 334 

14.4.3 编写开盘时运行函数 334 

14.4.4 编写收盘后运行函数 335 

14.4.5 KD指标量化交易策略的回测 335 

14.5 BOLL指标量化交易策略实战案例 336 

14.5.1 编写初始化函数 336 

14.5.2 编写开盘前运行函数 337 

14.5.3 编写开盘时运行函数 337 

14.5.4 编写收盘后运行函数 338 

14.5.5 BOLL指标量化交易策略的回测 339 

14.6 多股票持仓量化交易策略实战案例 339 

14.6.1 编写初始化函数 340 

14.6.2 编写单位时间调用的函数 340 

14.6.3 多股票持仓量化交易策略的回测 341 

14.7 医药股轮动量化交易策略实战案例 342 

14.7.1 编写初始化函数 342 

14.7.2 编写选股函数 342 

14.7.3 编写交易函数 343 

14.7.4 医药股轮动量化交易策略的回测 343 

14.8 小市值股票量化交易策略实战案例 344 

14.8.1 编写初始化函数 344 

14.8.2 编写选股函数 345 

14.8.3 编写过滤停牌股票函数 345 

14.8.4 编写交易函数 346 

14.8.5 小市值股票量化交易策略的回测 346 

14.9 机器算法多因子量化交易策略实战案例 347 

14.9.1 编写初始化函数 347 

14.9.2 编写自定义的交易函数 348 

14.9.3 机器算法多因子量化交易策略的回测 353
点击展开 点击收起

—  没有更多了  —

以下为对购买帮助不大的评价

此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP