• 统计学习基础(第2版)(英文)
图书条目标准图
21年品牌 40万+商家 超1.5亿件商品

统计学习基础(第2版)(英文)

25.76 2.2折 119 九品

仅1件

北京海淀
认证卖家担保交易快速发货售后保障

作者[德]黑斯蒂(Hastie T.) 著

出版社世界图书出版公司

出版时间2015-01

版次2

装帧平装

货号A1

上书时间2024-12-12

新起点书店

四年老店
已实名 已认证 进店 收藏店铺

   商品详情   

品相描述:九品
图书标准信息
  • 作者 [德]黑斯蒂(Hastie T.) 著
  • 出版社 世界图书出版公司
  • 出版时间 2015-01
  • 版次 2
  • ISBN 9787510084508
  • 定价 119.00元
  • 装帧 平装
  • 开本 24开
  • 纸张 胶版纸
  • 页数 745页
  • 正文语种 英语
  • 原版书名 The Elements of Statistical Learning
【内容简介】
  Thisbookisourattempttobringtogethermanyoftheimportantnewideasinlearning,andexplaintheminastatisticalframework.Whilesomemathematicaldetailsareneeded,weemphasizethemethodsandtheirconceptualunderpinningsratherthantheirtheoreticalproperties.Asaresult,wehopethatthisbookwillappealnotjusttostatisticiansbutalsotoresearchersandpractitionersinawidevarietyoffields.
【作者简介】
作者:(德国)T.黑斯蒂(Trevor Hastie)
【目录】
PrefacetotheSecondEdition
PrefacetotheFirstEdition
1Introduction

2OverviewofSupervisedLearning
2.1Introduction
2.2VariableTypesandTerminology
2.3TwoSimpleApproachestoPrediction
LeastSquaresandNearestNeighbors
2.3.1LinearModelsandLeastSquares
2.3.2Nearest-NeighborMethods
2.3.3FromLeastSquarestoNearestNeighbors
2.4StatisticalDecisionTheory
2.5LocalMethodsinHighDimensions
2.6StatisticalModels,SupervisedLearningandFunctionApproximation
2.6.1AStatisticalModelfortheJointDistributionPr(X,Y)
2.6.2SupervisedLearning
2.6.3FunctionApproximation
2.7StructuredRegressionModels
2.7.1DifficultyoftheProblem
2.8ClassesofRestrictedEstimators
2.8.1RoughnessPenaltyandBayesianMethods
2.8.2KernelMethodsandLocalRegression
2.8.3BasisFunctionsandDictionaryMethods
2.9ModelSelectionandtheBias-Variancerlyadeoff
BibliographicNotes
Exercises

3LinearMethodsforRegression
3.1Introduction
3.2LinearRegressionModelsandLeastSquares
3.2.1Example:ProstateCancer
3.2.2TheGauss-MarkovTheorem
3.2.3MultipleRegressionfromSimpleUnivariateRegression
3.2.4MultipleOutputs
3.3SubsetSelection
3.3.1Best-SubsetSelection
3.3.2Forward-andBackward-StepwiseSelection
3.3.3Forward-StagewiseRegression
3.3.4ProstateCancerDataExample(Continued)
3.4ShrinkageMethods
3.4.1RidgeRegression
3.4.2TheLasso
3.4.3Discussion:SubsetSelection,RidgeRegressionandtheLasso
3.4.4LeastAngleRegression
3.5MethodsUsingDerivedInputDirections
3.5.1PrincipalComponentsRegression
3.5.2PartialLeastSquares
3.6Discussion:AComparisonoftheSelectionandShrinkageMethods
3.7MultipleOutcomeShrinkageandSelection
3.8MoreontheLassoandRelatedPathAlgorithms
3.8.1IncrementalForwardStagewiseRegression
3.8.2Piecewise-LinearPathAlgorithms
3.8.3TheDantzigSelector
3.8.4TheGroupedLasso
3.8.5FurtherPropertiesoftheLasso
3.8.6PathwiseCoordinateOptimization
3.9ComputationalConsiderations
BibliographicNotes
Exercises
……
4LinearMethodsforClassification
5BasisExpansionsandRegularization
6KernelSmoothingMethods
7ModelAssessmentandSelection
8ModellnferenceandAveraging
9AdditiveModels,Trees,andRelatedMethods
10BoostingandAdditiveTrees
11NeuralNetworks
12SupportVectorMachinesandFlexibleDiscriminants
13PrototypeMethodsandNearest-Neighbors
14UnsupervisedLearning
15RandomForests
16EnsembleLearning
17UndirectedGraphicalModels
18High-DimensionalProblems:p≥N
References
AuthorIndex
Index
点击展开 点击收起

—  没有更多了  —

以下为对购买帮助不大的评价

此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP