• R语言机器学习:实用案例分析
图书条目标准图
21年品牌 40万+商家 超1.5亿件商品

R语言机器学习:实用案例分析

18.15 3.1折 59 九品

仅1件

北京海淀
认证卖家担保交易快速发货售后保障

作者[印]拉格哈夫·巴利(Raghav Bali);迪潘简·撒卡尔

出版社机械工业出版社

出版时间2017-06

版次1

装帧其他

货号A17

上书时间2024-12-10

新起点书店

四年老店
已实名 已认证 进店 收藏店铺

   商品详情   

品相描述:九品
图书标准信息
  • 作者 [印]拉格哈夫·巴利(Raghav Bali);迪潘简·撒卡尔
  • 出版社 机械工业出版社
  • 出版时间 2017-06
  • 版次 1
  • ISBN 9787111565901
  • 定价 59.00元
  • 装帧 其他
  • 开本 16开
  • 纸张 胶版纸
  • 页数 223页
【内容简介】
数据科学和机器学习是当今技术领域中*的流行语。本书将带您进行一次数据驱动的旅程,从基础的R和机器学习开始,逐步建立用于解决实际问题的项目的概念。本书共8章。第1章介绍R及其相关的基础知识,并简单介绍了机器学习的概念。第2章深入研究机器学习,介绍各种类型的学习算法,以及一些现实世界的案例。第3章使用市场购物篮分析和关联规则挖掘进行电子商务产品推荐、预测和模式分析。第4章分析不同用户对电子商务产品的评论和评级,使用算法和技术(例如用户协同过滤器)设计一个推荐系统。第5章将机器学习应用于信用风险检测和预测中。第6章使用多种机器学习算法检测和预测哪些客户具有潜在信用风险,介绍了多种有监督学习算法并比较它们的性能。第7章介绍社交媒体和通过TwitterAPI收集数据的过程。第8章根据TwitterAPI的知识建立一个项目,基于该项目分析推文中的情感。
【作者简介】
:
拉格晗夫·巴利,拥有印度Barlgalore靠前信息技术学院信息技术硕士学位(品牌得主)。他是Intel的IT工程师,从事分析、商务智能和应用程序开发。他曾在ERP、金融、商务智能等领域的一些世界很好公司从事分析和开发工作。
精彩内容:
Preface?前    言数据科学和机器学习是当今技术领域中的很好流行语。从零售商店到世界500强企业,每个人都在努力使用机器学习从庞大的数据中获得有价值的信息,以发展其业务。借助强大的数据处理功能、丰富的机器学习包和活跃的开发者社区,R使用户能够构建复杂的机器学习系统,解决现实世界中的数据问题。    本书将带你踏上数据驱动的旅程,从最基础的R和机器学习开始,逐步学习如何解决实际问题。    本书内容第1章概述本书的内容,帮助你熟悉R及其基础知识。该章还简短地介绍机器学习。    第2章通过解释机器学习的基本概念,深入研究机器学习。同时,还呈现各种类型的学习算法,以及现实世界中的一些示例。    第3章开始介绍第一个项目的第一部分,使用各种机器学习技术进行电子商务产品推荐、预测和模式分析。该章针对市场购物篮分析和关联规则挖掘,检测客户的购物模式和趋势,使用这些技术进行产品预测和推荐。这些技术在零售企业和电子商务商店(例如Target、Macy’s、Flipkart和Amazon)中广泛使用,用来进行产品推荐。    第4章介绍第一个项目(电子商务产品推荐、预测和模式分析)的第二部分。该章分析不同用户对电子商务产品的评论和评级,使用算法和技术(例如,用户协同过滤)设计一个推荐系统。    第5章开始介绍第二个项目,将机器学习应用到一个复杂的金融场景中,即处理信用风险检测和预测。该章介绍新的主题,研究1000名向银行申请贷款的用户的金融信用数据集。我们将使用机器学习技术检测具有潜在信用风险以及贷款后
...
【目录】
Contents?目  录

译者序

前言

关于作者

关于审稿人

第1章 开始使用R语言和机器学习  1

1.1 探究R的基本内容  2

1.1.1 使用R作为科学计算器  2

1.1.2 向量运算  3

1.1.3 特殊值  5

1.2 R的数据结构  5

1.2.1 向量  6

1.2.2 数组和矩阵  8

1.2.3 列表  13

1.2.4 数据框  16

1.3 使用函数  20

1.3.1 内置函数  20

1.3.2 用户自定义函数  20

1.3.3 以参数形式传递函数  21

1.4 控制代码流  22

1.4.1 使用if、if-else和ifelse语句  22

1.4.2 使用switch语句  23

1.4.3 循环  23

1.5 高级结构  24

1.5.1 lapply和sapply函数  25

1.5.2 apply函数  26

1.5.3 tapply函数  27

1.5.4 mapply函数  28

1.6 进一步使用R  29

1.6.1 获得帮助  29

1.6.2 处理添加包  30

1.7 机器学习基础  30

1.7.1 机器学习——真正的含义是什么  30

1.7.2 机器学习——如何应用于现实世界  31

1.7.3 机器学习算法的类型  32

1.8 总结  33

第2章 让我们进行机器学习  34

2.1 理解机器学习  35

2.2 机器学习算法  35

2.3 算法家族  40

2.3.1 有监督学习算法  41

2.3.2 无监督学习算法  52

2.4 总结  57

第3章 应用市场购物篮分析预测顾客购买趋势  58

3.1 检测和预测趋势  59

3.2 市场购物篮分析  60

3.2.1 市场购物篮分析的真正含义  60

3.2.2 核心概念和定义  60

3.2.3 用于分析的技术  62

3.2.4 制定数据驱动的决策  63

3.3 评估产品列联矩阵  63

3.3.1 获取数据  64

3.3.2 分析和可视化数据  65

3.3.3 整体推荐  66

3.3.4 高级列联矩阵  67

3.4 频繁项集的生成  69

3.4.1 开始  69

3.4.2 数据检索和转换  69

3.4.3 建立项集关联矩阵  70

3.4.4 建立频繁项集生成工作流  72

3.4.5 检测购物趋势  74

3.5 关联规则挖掘  75

3.5.1 加载添加包和数据  76

3.5.2 探索性分析  76

3.5.3 检测和预测购物趋势  77

3.5.4 关联规则可视化  80

3.6 总结  80

第4章 建立产品推荐系统  82

4.1 理解推荐系统  83

4.2 推荐系统存在的问题  83

4.3 协同过滤器  84

4.3.1 核心概念和定义  84

4.3.2 协同过滤算法  85

4.4 建立推荐引擎  87

4.4.1 矩阵分解  88

4.4.2 算法实现  90

4.4.3 解释结果  94

4.5 产品推荐引擎实战  95

4.5.1 提取、转换并分析数据  96

4.5.2 模型准备和预测  99

4.5.3 模型评价  100

4.6 总结  102

第5章 信用风险检测和预测——描述分析  103

5.1 分析的类型  104

5.2 我们将要面临的挑战  104

5.3 什么是信用风险  105

5.4 获取数据  105

5.5 数据处理  107

5.5.1 处理缺失值  107

5.5.2 数据类型转换  108

5.6 数据分析和变换  109

5.6.1 建立分析实用函数  110

5.6.2 分析数据集  113

5.6.3 保存变换后的数据集  130

5.7 接下来的步骤  130

5.7.1 建立特征集  130

5.7.2 选择机器学习算法  131

5.8 总结  131

第6章 信用风险检测和预测——预测分析  133

6.1 预测分析  134

6.2 如何预测信用风险  135

6.3 预测模型中的重要概念  137

6.3.1 准备数据  137

6.3.2 建立预测模型  137

6.3.3 评估预测模型  138

6.4 获取数据  140

6.5 数据处理  141

6.6 特征选择  142

6.7 应用逻辑回归建立模型  144

6.8 应用支持向量机建立模型  148

6.9 应用决策树建立模型  156

6.10 应用随机森林建立模型  161

6.11 应用神经网络建立模型  165

6.12 模型比较和选择  169

6.13 总结  171

第7章 社交媒体分析:分析Twitter数据  172

7.1 社交网络(Twitter)  172

7.2 数据挖掘与社交网络  174

7.2.1 挖掘社交网络数据  175

7.2.2 数据和可视化  176

7.3 从Twitter API开始  179

7.3.1 概览  179

7.3.2 注册应用  180

7.3.3 链接/认证  181

7.3.4 提取推文示例  182

7.4 Twitter数据挖掘  183

7.4.1 常用词汇和关联  186

7.4.2 广泛使用的设备  191

7.4.3 层次聚类  192

7.4.4 主题建模  194

7.5 社交网络数据挖掘带来的挑战  197

7.6 参考文献  198

7.7 总结  198

第8章 Twitter数据的情感分析  200

8.1 理解情感分析  201

8.1.1 情感分析的关键概念  201

8.1.2 方法  204

8.1.3 应用  205

8.1.4 挑战  206

8.2 推文中的情感分析  206

8.2.1 极性分析  208

8.2.2 基于分类的算法  212

8.3 总结  223
点击展开 点击收起

—  没有更多了  —

以下为对购买帮助不大的评价

此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP