黎曼-芬斯勒几何导论
¥
42.45
8.5折
¥
50
九品
仅1件
作者鲍 著
出版社世界图书出版公司
出版时间2009-08
版次4
装帧平装
货号A10
上书时间2024-11-01
商品详情
- 品相描述:九品
图书标准信息
-
作者
鲍 著
-
出版社
世界图书出版公司
-
出版时间
2009-08
-
版次
4
-
ISBN
9787510005053
-
定价
50.00元
-
装帧
平装
-
开本
24开
-
纸张
胶版纸
-
页数
425页
-
正文语种
英语
-
原版书名
An Introduction to Riemann-Finsler Geometry
- 【内容简介】
-
ThesubjectmatterofthisbookhaditsgenesisinRiemanns1854"habil-itation"address:"UberdieHypothesen,welchederGeometriezuGrundeliegen"(OntheHypotheses,whichlieattheFoundationsofGeometry).VolumeIIofSpivaksDifferentialGeometrycontainsanEnglishtranslationofthisinfluentiallecture,withacommentarybySpivakhimself.Riemann,undoubtedlythegreatestmathematicianofthe19thcentury,aimedatintroducingthenotionofamanifoldanditsstructures.Theprob-leminvolvedgreatdifficulties.But,withhypothesesonthesmoothnessofthefunctionsinquestion,theissuescanbesettledsatisfactorilyandthereisnowacompletetreatment.Traditionally,thestructurebeingfocusedonistheRiemannianmetric,whichisaquadraticdifferentialform.Putanotherway,itisasmoothlyvaryingfamilyofinnerproducts,oneoneachtangentspace.Theresultinggeometry——Riemanniangeometry——hasundergonetremendousdevelop-mentinthiscentury.AreasinwhichithashadsignificantimpactincludeEinsteinstheoryofgeneralrelativity,andglobaldifferentialgeometry.InthecontextofRiemannslecture,thisrestrictiontoaquadraticdif-ferentialform
- 【目录】
-
Preface
Acknowledgments
PARTONE
FinslerManifoldsandTheirCurvature
CHAPTER1
FinslerManifoldsand
theFundamentalsofMinkowskiNorms
1.0PhysicalMotivations
1.1FinslerStructures:DefinitionsandConventions
1.2TwoBasicPropertiesofMinkowskiNorms
1.2A.EnlersTheorem
1.2B.AFundamentalInequality
1.2C.InterpretationsoftheFundamentalInequality.
1.3ExplicitExamplesofFinslerManifolds
1.3A.MinkowskiandLocallyMinkowskiSpaces
1.3B.RiemannianManifolds
1.3C.RandersSpaces
1.3D.BerwaldSpaces
1.3E.FinslerSpacesofConstantFlagCurvature
1.4TheFundamentalTensorandtheCartanTensor
RefereneesforChapter1
CHAPTER2
TheChernConnection
2.0Prologue
2.1TheVectorBundleandRelatedObjects
2.2CoordinateBasesVersusSpecialOrthonormalBases
2.3TheNonlinearConnectionontheManifoldTM\O
2.4TheChernConnectionon
2.5IndexGymnastics
2.5A.TheSlash(..-)sandtheSemicolon(...);s
2.5B.CovariantDerivativesoftheFundamentalTensorg
2.5C.CovariantDerivativesoftheDistinguished
ReferencesforChapter2
CHAPTER3
CurvatureandSchursLemma
3.1Conventionsandthehh-,hv-,w-curvatures
3.2FirstBianchiIdentitiesfromTorsionFreeness
3.3FormulasforRandPinNaturalCoordinates
3.4FirstBianchiIdentitiesfrom"Almost"g-compatibility
3.4A.Consequencesfromthe
3.4B.Consequencesfromthe
3.4C.Consequencesfromthe
3.5SecondBianchiIdentities
3.6InterchangeFormulasorRicciIdentities
3.7LieBracketsamongthe
Oy
3.8DerivativesoftheGeodesicSprayCoefficients
3.9TheFlagCurvature
3.9A.ItsDefinitionandItsPredecessor
3.9B.AnInterestingFamilyofExamplesofNumataType
3.10SchursLemma
ReferencesforChapter3
CHAPTER4
FinslerSurfacesand
aGeneralizedGauss-BonnetTheorem
4.0Prologue
4.1MinkowskiPlanesandaUsefulBasis
4.1A.RundsDifferentialEquationandItsConsequence
4.1B.ACriterionforCheckingStrongConvexity
4.2TheEquivalenceProblemforMinkowskiPlanes
4.3TheBerwaldFrameandOurGeometricalSetuponSM
4.4TheChernConnectionandtheInvariantsI,J,K
4.5TheRiemannianArcLengthoftheIndicatrix
4.6AGauss-BonnetTheoremforLandsbergSurfaces
ReferencesforChapter4
PARTTWO
CalculusofVariationsandComparisonTheorems
CHAPTER5
VariationsofArcLength,
JacobiFields,theEffectofCurvature
5.1TheFirstVariationofArcLength
5.2TheSecondVariationofArcLength
5.3GeodesicsandtheExponentialMap
5.4JacobiFields
5.5HowtheFlagCurvaturesSignInfluencesGeodesicRays
ReferencesforChapter5
CHAPTER6
TheGaussLemmaandtheHopf-RinowTheorem
6.1TheGaussLemma
6.1A.TheGaussLemmaProper
6.1B.AnAlternativeFormoftheLemma
6.1C.IstheExponentialMapEveraLocalIsometry?
6.2FinslerManifoldsandMetricSpaces
6.2A.AUsefulTechnicalLemma
6.2B.ForwardMetricBallsandMetricSpheres
6.2C.TheManifoldTopologyVersustheMetricTopology.
6.2D.ForwardCauchySequences,ForwardCompleteness.
6.3ShortGeodesicsAreMinimizing
6.4TheSmoothnessofDistanceFunctions
6.4A.OnMinkowskiSpaces
6.4B.OnFinslerManifolds
6.5LongMinimizingGeodesics
6.6TheHopf-RinowTheorem
ReferencesforChapter6
CHAPTER7
TheIndexFormandtheBonnet-MyersTheorem
7.1ConjugatePoints
7.2TheIndexForm"
7.3WhatHappensintheAbsenceofConjugatePoints?
7.3A.GeodesicsAreShortestAmong"Nearby"Curves...
7.3B.ABasicIndexLemma
7.4WhatHappensIfConjugatePointsArePresent?
7.5TheCutPointVersustheFirstConjugatePoint
7.6RicciCurvatures
7.6A.TheRicciScalarRicandtheRicciTensorRicij
7.6B.TheInterplaybetweenRicandRicij
7.7TheBonnet-MyersTheorem
ReferencesforChapter7
CHAPTER8
TheCutandConjugateLoci,andSyngesTheorem
8.1Definitions
8.2TheCutPointandtheFirstConjugatePoint
8.3SomeConsequencesoftheInverseFunctionTheorem
8.4TheMannerinWhichandDependony
8.5GenericPropertiesoftheCutLocus
8.6AdditionalPropertiesofCutxWhenMIsCompact
8.7ShortestGeodesicswithinHomotopyClasses
8.8SyngesTheorem
ReferencesforChapter8
CHAPTER9
TheCartan-HadamardTheoremand
RauchsFirstTheorem
9.1EstimatingtheGrowthofJacobiFields
9.2WhenDoLocalDiffeomorphismsBecomeCoveringMaps?.
9.3SomeConsequencesoftheCoveringHomotopyTheorem...
9.4TheCartan-HadamardTheorem
9.5PreludetoRauchsTheorem
9.5A.TransplantingVectorFields
9.5B.ASecondBasicPropertyoftheIndexForm
9.5C.FlagCurvatureVersusConjugatePoints
9.6RauchsFirstComparisonTheorem
9.7JacobiFieldsonSpaceForms
9.8ApplicationsofRauchsTheorem
ReferencesforChapter9
点击展开
点击收起
— 没有更多了 —
以下为对购买帮助不大的评价