• 无处不在的分形(第2版)
图书条目标准图
21年品牌 40万+商家 超1.5亿件商品

无处不在的分形(第2版)

96.69 九品

仅1件

北京海淀
认证卖家担保交易快速发货售后保障

作者[英]巴恩斯利(Barnsley M.F) 著

出版社世界图书出版公司

出版时间2009-01

版次1

装帧平装

货号A13

上书时间2024-10-31

新起点书店

四年老店
已实名 已认证 进店 收藏店铺

   商品详情   

品相描述:九品
图书标准信息
  • 作者 [英]巴恩斯利(Barnsley M.F) 著
  • 出版社 世界图书出版公司
  • 出版时间 2009-01
  • 版次 1
  • ISBN 9787506292733
  • 定价 96.00元
  • 装帧 平装
  • 开本 16开
  • 纸张 胶版纸
  • 页数 531页
  • 正文语种 英语
【内容简介】
  Iacknowledgeandthankmanypeoplefortheirhelpwiththisbook.InparticularIthankAlanSloan,whohasunceasinglyencouragedme,whowrotethefirstCollagesoftware,andwhosoclearlyenvisionedtheapplicationofiteratedfunctionsystemstoimagecompressionandcommunicationsthathefoundedacompanynamedIteratedSystemsIncorporated.EdwardVrscay,whotaughtthefirstcourseindeterministicfractalgeometryatGeorgiaTech,sharedhisideasabouthowthecoursecouldbetaught,andsuggestedsomesubjectsforinclusioninthistext.StevenDemko,whocollaboratedwithmeonthediscoveryofiteratedfunctionsystems,madeearlydetailedproposalsonhowthesubjectcouldbepresentedtostudentsandscientists,andprovidedcommentsonseveralchapters.AndrewHarringtonandJeffreyGeronimo,whodiscoveredwithmeorthogonalpolynomialsonJuliasets.Mycollaborationswiththemoverfiveyearsformedformethefoundationonwhichiteratedfunctionsystemsarebuilt.Watchformorepapersfromus!
  LesKarlovitz,whoencouragedandsupportedmyresearchoverthelastnineyears,obtainedthetimeformetowritethisbookandprovidedspecifichelp,advice,anddirection.Hiswordscanbefoundinsomeofthesentencesinthetext.GunterMeyer,whohasencouragedandsupportedmyresearchoverthelastnineyears.Hehasoftengivenmegoodadvice.RobertKasriel,whotaughtmesometopologyoverthelasttwoyears,correctedandrewrotemyproofofTheorem7.1inChapterIIandcontributedotherhelpandwarmencouragement.NathanialChafee,whoreadandcorrectedChapterIIandearlydraftsofChaptersIIIandIV.Hisaptconstructivecommentshaveincreasedsubstantiallytheprecisionofthewriting.JohnElton,whotaughtmesomeergodictheory,continuestocollaborateonexcitingresearchintoiteratedfunctionsystems,andhelpedmewithmanypartsofthebook.DanielBessisandPierreMoussa,whoarefilledwiththewonderandmysteryofscience,andtaughtmetolookformathematicaleventsthataresoastonishingthattheymaybecalledmiracles.ResearchworkwithBessisandMoussaatSaclayduring1978,ontheDiophantineMomentProblemandIsingModels,wastheseedthatgrewintothisbook.WarrenStahle,whoprovidedsomeofhisexperimentalresearchresults.
【目录】
Foreword
Acknowledgments
ChapterIIntroduction
ChapterIIMetricSpaces;EquivalentSpaces;ClassificationofSubsets;andtheSpaceofFractals
1.Spaces
2.MetricSpaces
3.CauchySequences,LimitPoints,ClosedSets,PerfectSets,andCompleteMetricSpaces
4.CompactSets,BoundedSets,OpenSets,Interiors,andBoundaries
5.ConnectedSets,DisconnectedSets,andPathwiseConnectedSets
6.TheMetricSpace(H(X),h):ThePlaceWhereFractalsLive
7.TheCompletenessoftheSpaceofFractals
8.AdditionalTheoremsaboutMetricSpaces

ChapterIIITransformationsonMetricSpaces;ContractionMapplngs;andtheConstructionofFractals
1.TransformationsontheRealLine
2.AffineTransformationsintheEuclideanPlane
3.MObiusTransformationsontheRiemannSphere
4.AnalyticTransformations
5.HowtoChangeCoordinates
6.TheContractionMappingTheorem
7.ContractionMappingsontheSpaceofFractals
8.TwoAlgorithmsforComputingFractalsfromIteratedFunctionSystems
9.CondensationSets
10.HowtoMakeFractalModelswiththeHelpoftheCollageTheorem
11.BlowingintheWind:TheContinousDependenceofFractalsonParameters

ChapterIVChaoticDynamicsonFractal$
1.TheAddressesofPointsonFractals
2.ContinuousTransformationsfromCodeSpacetoFractals
3.IntroductiontoDynamicalSystems
4.DynamicsonFractals:OrHowtoComputeOrbitsbyLookingatPictures
5.EquivalentDynamicalSystems
6.TheShadowofDeterministicDynamics
7.TheMeaningfulnessofInaccuratelyComputedOrbitsisEstablishedbyMeansofaShadowingTheorem
8.ChaoticDynamicsonFractals

ChapterVFractalDimension
1.FractalDimension
2.TheTheoreticalDeterminationoftheFractalDimension
3.TheExperimentalDeterminationoftheFractalDimension
4.TheHausdorff-BesicovitchDimension

ChapterVlFractalInterpolation
1.Introduction:ApplicationsforFractalFunctions
2.FractalInterpolationFunctions
3.TheFractalDimensionofFractalInterpolationFunctions
4.HiddenVariableFractalInterpolation
5.Space-FillingCurves

ChapterVIIJullaSets
1.TheEscapeTimeAlgorithmforComputingPicturesofIFSAttractorsandJuliaSets
2.IteratedFunctionSystemsWhoseAttractorsAreJuliaSets
3.TheApplicationofJuliaSetTheorytoNewtonsMethod
4.ARichSourceforFractals:InvariantSetsofContinuousOpenMappings

ChapterVIIIParameterSpacesandMandelbrotSets
1.TheIdeaofaParameterSpace:AMapofFractals
2.MandelbrotSetsforPairsofTransformations
3.TheMandelbrotSetforJuliaSets
4.HowtoMakeMapsofFamiliesofFractalsUsingEscapeTimes

ChapterIXMeasuresonFractals
1.IntroductiontoInvariantMeasuresonFractals
2.FieldsandSigma-Fields
3.Measures
4.Integration
5.TheCompactMetricSpace(P(X),d)
6.AContractionMappingon(~~o(X))
7.EltonsTheorem
8.ApplicationtoComputerGraphics

ChapterXRecurrentIteratedFunctionSystems
1.FractalSystems
2.RecurrentIteratedFunctionSystems
3.CollageTheoremforRecurrentIteratedFunctionSystems
4.FractalSystemswithVectorsofMeasuresasTheirAttractors
5.References
References
SelectedAnswers
Index
CredltsforFiguresandColorPlates
点击展开 点击收起

—  没有更多了  —

以下为对购买帮助不大的评价

此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP