非线性超分辨纳米光学及应用(英文版)
非线性超分辨纳米光学及应用(英文版)3H25c ax预售 介意者慎拍! 谢谢理解!祝您购物愉快! 版次更新不同步 以实际收到书为准
¥
120
全新
库存3件
作者Jingsong Wei 著
出版社科学出版社
出版时间2015-01
版次1
装帧精装
上书时间2023-10-09
商品详情
- 品相描述:全新
图书标准信息
-
作者
Jingsong Wei 著
-
出版社
科学出版社
-
出版时间
2015-01
-
版次
1
-
ISBN
9787030419484
-
定价
120.00元
-
装帧
精装
-
开本
16开
-
纸张
胶版纸
-
页数
256页
-
正文语种
英语
- 【内容简介】
-
随着光电子信息技术、纳米科技和生物生命科学的发展,要求光学成像或光刻的分辨率达到亚波长甚至纳米尺度。然而,由于受到阿贝衍射极限的制约,无论是光刻的特征线宽、光盘存储器件的最小记录点尺寸、还是光学图像的分辨率,按照传统的衍射光学理论很难突破半波极限。对此,科研人员提出了各种方法和手段来挑战半波极限,实现纳米尺度的光学分辨率。《非线性超分辨纳米光学及应用(英文版)》首先分析和介绍了目前突破光学衍射极限的常见方法的原理和实验方案,然后聚焦于利用薄膜材料(特别是半导体薄膜)光学非线性效应来突破阿贝衍射极限。从薄膜材料非线性折射和吸收的表征方法出发,分析半导体薄膜以及金属掺杂半导体薄膜的非线性吸收和折射特性。
- 【目录】
-
1GeneralMethodsforObtainingNanoscaleLightSpot
1.1Introduction
1.2Near-FieldScanningProbeMethod
1.2.1Aperture-TypeProbe
1.2.2Apertureless-TypeMetalProbe
1.2.3Tip-on-Aperture-TypeProbe
1.2.4C-ApertureEncircledbySurfaceCorrugationsonaMetalFilm
1.2.5NonlinearSelf-focusingProbe
1.3SolidImmersionLensMethod
1.4SurfacePlasmonicLens
1.5StimulatedEmissionDepletionFluorescenceMicroscopeMethods
References
2Third-OrderNonlinearEffects
2.1Introduction
2.2NonlinearRefraction
2.3NonlinearAbsorption
References
3CharacterizationMethodsforNonlinearAbsorptionandRefractionCoefficients
3.1Introduction
3.2TheoryandSetupofBasicZ-scanMethod
3.2.1DescriptionofBasicPrinciple
3.2.2DataAnalysisforZ-scanCurves
3.3GenerationandEliminationofPseudo-nonlinearityinz-scanMeasurement
3.3.1IncidentAngleasaFunctionofZ-scanPosition
3.3.2DependenceofTransmittanceonIncidentandPolarizationAzimuthAngles
3.3.3IncidentAngleChange-InducedPseudo-nonlinearAbsorption
3.3.4CalculatedPseudo-nonlinearAbsorptionCurves
3.3.5ReductionorEliminationofPseudo-nonlinearAbsorption
3.4EliminatingtheInfluencefromReflectionLossonz-scanMeasurement
3.4.1FresnelReflectionLossinthez-scanMeasurement
3.4.2TheCaseofThinSamples
3.4.3TheCaseofNanofilmSamples
3.5InfluenceofFeedbackLightonz-scanMeasurement
3.5.1InfluenceofFeedbackLightonSemiconductorLaserDevices
3.5.2EliminationofFeedbackLightInfluenceonz-scanMeasurement
References
4OpticalNonlinearAbsorptionandRefractionofSemiconductorThinFilms
4.1Introduction
4.2TheoreticalBasis
4.2.1Two-BandModelforFree-Carriers-InducedNonlinearEffects
4.2.2Three-BandModelforNonlinearAbsorptionandRefraction
4.2.3ThermallyInducedNonlinearAbsorptionandRefraction
4.3NonlinearAbsorptionandRefractionofSemiconductorThinFilms.
4.3.1NonlinearSaturationAbsorptionofc-Sb-BasedPhase-ChangeThinFilms
4.3.2NonlinearReverseSaturationAbsorptionandRefractionofc-InSbThinFilms
4.3.3NonlinearReverseSaturationAbsorptionofAglnSbTeThinFilms
4.3.4NonlinearAbsorptionReversalofc-Ge2Sb2Te5ThinFilms
4.3.5NonlinearSaturationAbsorptionandRefractionofAg-dopedSiThinFilms.
4.4Summary
References
5NanoscaleSpotFormationThroughNonlinearRefractionEffect
5.1Introduction
5.2InterferenceManipulation-InducedNanoscaleSpot
5.2.1NonlinearFabry-PerotCavityStructureModel
5.3Self-focusingEffect-InducedNanoscaleSpotThrough“Thick”Samples
5.3.1MultilayerThinLensSelf-focusingModel
5.3.2LightTravelingInsidePositiveNonlinearRefractionSamples
5.3.3ComparisonwithEquivalentConvergingLensModel
5.3.4ApplicationSchematicDesign
5.4Summary
References
6OpticalSuper-ResolutionEffectThroughNonlinearSaturationAbsorption
6.1BasicDescriptionofNonlinearSaturationAbsorption-InducedSuper-ResolutionEffect
6.2Becr-LambertModelforThin(orWeak)NonlinearSaturationAbsorptionSample
6.2.1Beer-LambertAnalyticalModel
6.2.2ExperimentalObservationofSuper-ResolutionSpot
6.3Multi-layerModelforThick(orStrong)NonlinearSaturationAbsorptionSamples
6.3.1Multi-layerAnalyticalModelforFormationofPinholeChannel
6.3.2Super-ResolutionEffectAnalysisUsingMulti-layerModel
6.4Summary
References
7ResolvingImprovementbyCombinationofPupilFiltersandNonlinearThinFilms
7.1Introduction
7.2Super-ResolutionwithPupilFilters
7.2.1BinaryOpticalElementsasPupilFilters:LinearlyPolarizedLightIllumination
7.2.2TemaryopticalElementsasPupilFilters:RadiallyorCircularlyPolarizedLightIllumination
7.3CombinationofPupilFilterswithNonlinearAbsorptionThinFilms
7.3.1CombinationofNonlinearSaturationAbsorptionThinFilmswithThree-ZoneAnnularBinaryPhaseFilters:LinearlyPolarizedLightIllumination
7.3.2CombinationofNonlinearReverseSaturationAbsorptionThinFilmswithFive-ZoneBinaryPupilFilter:CircularlyPolarizedLightIllumination
7.4NonlinearThinFilmsasPupilFilters
7.4.1ScalarTheoreticalBasis
7.4.2Super-ResolutionSpotAnalysis
References
8ApplicationsofNonlinearSuper.ResolutionThinFilmsinNano.opticalDataStorage
8.1DevelopmentTrendforOpticalInformationStorage
8.2SaturationAbsorption-InducedHigh-DensityOpticalDataStorage
8.2.1Read-OnlySuper-ResolutionOpticalDiskStorage
8.2.2RecordableSuper-ResolutionNano-opticalStorage
8.3Reverse-SaturationAbsorption-InducedSuper-ResolutionOpticalStorage
8.3.1RecordableSuper-ResolutionOpticalDiskswithNonlinearReverse-SaturationAbsorption
8.3.2Read-OnlyOpticalDiskwithReverse-SaturationAbsorptionEffect
8.4Read-OnlySuper-ResolutionOpticalDiskswithThermallyInducedReflectanceChangeEffect
References
9ApplicationsofNonlinearSuper.ResolutionEffectsinNanolithographyandHigh.ResolutionLightImaging
9.1Introduction
9.2ThermalThresholdLithography
9.2.1CryStallizationThresholdLithography
9.2.2ThermalDecompositionThresholdLithography
9.2.3MoltenAblationThresholdLithography
9.2.4PatternApplication:GrayscaleLithography
9.3NanolithographybyCombinationofSaturationAbsorptionandThermalThresholdEfiects
9.3.1BasicPrinciple
9.3.2NanoscaleLithographyInducedbySiThinFilmwith405-nmLaserwavelength
9.4NanolithographybyCombinationofReverseSaturationAbsorptionandThermalDiffusionManipulation
9.4.1FormationofBelow-Diffraction-LimitedEnergyAbsorptionSpot
9.4.2ThermalDiffusionManipulationbyThermalConductiveLayer
9.4.3ExperimentalNanolithographyMarks
9.5Nonlinearity-InducedSuper-ResolutionOpticalImaging
9.5.1BasicPrincipleSchematics
9.5.2TheoreticalDescription
9.5.3ExperimentalTesting
9.6Summary
References
Remarkings
点击展开
点击收起
— 没有更多了 —
以下为对购买帮助不大的评价