机器学习算法导论
正版新书 新华官方库房直发 可开电子发票
¥
44.34
7.4折
¥
59.9
全新
库存3件
作者王磊,王晓东
出版社清华大学出版社
ISBN9787302524564
出版时间2019-07
版次1
装帧平装
开本16开
纸张胶版纸
页数386页
字数578千字
定价59.9元
货号SC:9787302524564
上书时间2024-11-02
商品详情
- 品相描述:全新
-
全新正版 提供发票
- 商品描述
-
作者简介:
王磊:2006年本科毕业于清华大学,2011年获得美国佐治亚理工学院博士学位。现就职于美国Facebook公司,担任主任工程经理。主要研究方向是:人工智能算法与架构、博弈论与优化算法理论。
主编推荐:
内容简介:
机器学习是计算机智能围棋博弈系统、无人驾驶汽车和工业界人工智能助理等新兴技术的灵魂,特别是深度学习理论更是诸多高精尖人工智能技术的核心。掌握机器学习理论与实践技术是学习现代人工智能科学最重要的一步。
本书既讲述机器学习算法的理论分析,也结合具体应用介绍它们在Python中的实现及使用方法。本书的第2到第9章主要介绍监督式学习算法。其中包括:监督式学习算法基础、线性回归算法、机器学习中的搜索算法、Logistic回归算法、支持向量机算法、决策树、神经网络和深度学习。随后,在第10与11这两章,着重介绍无监督学习算法。其中包括:降维算法和聚类算法。第12章中讲述强化学习的相关知识。在本书的附录中还提供了学习本书推荐的数学基础知识和Python语言与机器学习工具库基本知识。
与其他机器学习类书籍相比,本书同时包含机器学习的算法理论和算法实践。希望通过课程的学习,读者能够从机器学习的理论基础和实际应用两个层面全面掌握其核心技术,同时计算思维能力得到显著提高,对于整个课程讲述的机器学习算法核心知识,能够知其然且知其所以然。同时着力培养读者的计算思维能力,使他们在面临实际应用的挑战时,能够以算法的观点思考问题,并灵活应用数学概念来设计出高效安全的解决方案。
目录:
第1章 机器学习算法概述
1.1 什么是机器学习
1.2 机器学习的形式分类
1.2.1 监督式学习
1.2.2 无监督学习
1.2.3 强化学习
1.3 机器学习算法综览
1.4 有关术语的约定
小结
第2章 监督式学习算法基础
2.1 监督式学习基本概念
2.2 经验损失最小化架构
2.3 监督式学习与经验损失最小化实例
2.4 正则化算法
小结
习题
第3章 线性回归算法
3.1 线性回归基本概念
3.2 线性回归优化算法
3.3 多项式回归
3.4 线性回归的正则化算法
3.5 线性回归的特征选择算法
3.5.1 逐步回归
3.5.2 分段回归
小结
习题
第4章 机器学习中的搜索算法
4.1 梯度下降算法与次梯度下降算法
4.2 随机梯度下降算法
4.3 牛顿迭代算法
4.4 坐标下降算法
小结
习题
第5章 Logistic回归算法
5.1 Logistic回归基本概念
5.2 Logistic回归优化算法
5.3 分类问题的度量
5.3.1 准确率
5.3.2 准确率与召回率
5.3.3 ROC曲线及AUC度量
5.4 Softmax回归
5.4.1 Softmax回归基本概念
5.4.2 So
...
— 没有更多了 —
全新正版 提供发票
以下为对购买帮助不大的评价