• 计算机视觉40例从入门到深度学习(OpenCV-Python)
21年品牌 40万+商家 超1.5亿件商品

计算机视觉40例从入门到深度学习(OpenCV-Python)

全新正版 急速发货

63.8 4.9折 129 全新

库存7件

天津武清
认证卖家担保交易快速发货售后保障

作者李立宗

出版社电子工业出版社

ISBN9787121436857

出版时间2022-06

装帧平装

开本其他

定价129元

货号29431753

上书时间2024-11-23

当科图书专营店

五年老店
已实名 已认证 进店 收藏店铺

   商品详情   

品相描述:全新
商品描述
作者简介
李立宗,天津职业技术师范大学信息技术工程学院副教授,参与了《数字图像处理》等多本图书的编写工作,对数字图像处理研究颇深。

目录

目录 
第1部分 基础知识导读篇 
第1章 数字图像基础 2 
1.1 图像表示基础 2 
1.1.1 艺术与生活 2 
1.1.2 数字图像 3 
1.1.3 二值图像的处理 5 
1.1.4 像素值的范围 5 
1.1.5 图像索引 7 
1.2 彩色图像的表示 8 
1.3 应用基础 9 
1.3.1 量化 10 
1.3.2 特征 10 
1.3.3 距离 11 
1.3.4 图像识别 13 
1.3.5 信息隐藏 15 
1.4 智能图像处理基础 16 
1.5 抽象 18 
第2章 Python基础 21 
2.1 如何开始 21 
2.2 基础语法 22 
2.2.1 变量的概念 22 
2.2.2 变量的使用 22 
2.3 数据类型 24 
2.3.1 基础类型 25 
2.3.2 列表 25 
2.3.3 元组 28 
2.3.4 字典 29 
2.4 选择结构 31 
2.5 循环结构 35 
2.6 函数 39 
2.6.1 什么是函数 39 
2.6.2 内置函数 41 
2.6.3 自定义函数 42 
2.7 模块 44 
2.7.1 标准模块 44 
2.7.2 第三方模块 45 
2.7.3 自定义模块 46 
第3章 OpenCV基础 47 
3.1 基础 47 
3.1.1 安装OpenCV 47 
3.1.2 读取图像 49 
3.1.3 显示图像 50 
3.1.4 保存图像 51 
3.2 图像处理 52 
3.2.1 像素处理 52 
3.2.2 通道处理 57 
3.2.3 调整图像大小 60 
3.3 感兴趣区域 62 
3.4 掩模 63 
3.4.1 掩模基础及构造 64 
3.4.2 乘法运算 65 
3.4.3 逻辑运算 66 
3.4.4 掩模作为函数参数 68 
3.5 色彩处理 69 
3.5.1 色彩空间基础 69 
3.5.2 色彩空间转换 71 
3.5.3 获取皮肤范围 72 
3.6 滤波处理 73 
3.6.1 均值滤波 75 
3.6.2 高斯滤波 78 
3.6.3 中值滤波 82 
3.7 形态学 84 
3.7.1 腐蚀 85 
3.7.2 膨胀 88 
3.7.3 通用形态学函数 91 
第2部分 基础案例篇 
第4章 图像加密与解密 94 
4.1 加密与解密原理 94 
4.2 图像整体加密与解密 96 
4.3 脸部打码及解码 98 
4.3.1 掩模方式实现 98 
4.3.2 ROI方式实现 101 
第5章 数字水印 105 
5.1 位平面 106 
5.2 数字水印原理 114 
5.3 实现方法 115 
5.4 具体实现 119 
5.5 可视化水印 121 
5.5.1 ROI 121 
5.5.2 加法运算 123 
5.6 扩展学习 125 
5.6.1 算术运算实现数字水印 125 
5.6.2 艺术字 128 
第6章 物体计数 131 
6.1 理论基础 131 
6.1.1 如何计算图像的中心点 131 
6.1.2 获取图像的中心点 133 
6.1.3 按照面积筛选前景对象 135 
6.2 核心程序 138 
6.2.1 核函数 138 
6.2.2 zip函数 140 
6.2.3 阈值处理函数threshold 140 
6.3 程序设计 141 
6.4 实现程序 142 
第7章 缺陷检测 144 
7.1 理论基础 144 
7.1.1 开运算 144 
7.1.2 距离变换函数distanceTransform 146 
7.1.3 小包围圆形 148 
7.1.4 筛选标准 149 
7.2 程序设计 150 
7.3 实现程序 151 
第8章 手势识别 153 
8.1 理论基础 154 
8.1.1 获取凸包 154 
8.1.2 凸缺陷 156 
8.1.3 凸缺陷占凸包面积比 159 
8.2 识别过程 161 
8.2.1 识别流程 162 
8.2.2 实现程序 165 
8.3 扩展学习:石头、剪刀、布的识别 167 
8.3.1 形状匹配 167 
8.3.2 实现程序 170 
第9章 答题卡识别 173 
9.1 单道题目的识别 173 
9.1.1 基本流程及原理 173 
9.1.2 实现程序 178 
9.2 整张答题卡识别原理 180 
9.2.1 图像预处理 180 
9.2.2 答题卡处理 181 
9.2.3 筛选出所有选项 189 
9.2.4 将选项按照题目分组 190 
9.2.5 处理每一道题目的选项 195 
9.2.6 显示结果 195 
9.3 整张答题卡识别程序 195 
第10章 隐身术 201 
10.1 图像的隐身术 201 
10.1.1 基本原理与实现 201 
10.1.2 实现程序 213 
10.1.3 问题及优化方向 214 
10.2 视频隐身术 215 
第11章 以图搜图 217 
11.1 原理与实现 218 
11.1.1 算法原理 218 
11.1.2 感知哈希值计算方法 220 
11.1.3 感知哈希值计算函数 224 
11.1.4 计算距离 224 
11.1.5 计算图像库内所有图像的哈希值 225 
11.1.6 结果显示 226 
11.2 实现程序 228 
11.3 扩展学习 230 
第12章 手写数字识别 231 
12.1 基本原理 232 
12.2 实现细节 233 
12.3 实现程序 235 
12.4 扩展阅读 236 
第13章 车牌识别 238 
13.1 基本原理 238 
13.1.1 提取车牌 238 
13.1.2 分割车牌 240 
13.1.3 识别车牌 242 
13.2 实现程序 246 
13.3 下一步学习 249 
第14章 指纹识别 250 
14.1 指纹识别基本原理 251 
14.2 指纹识别算法概述 251 
14.2.1 描述关键点特征 251 
14.2.2 特征提取 252 
14.2.3 MCC匹配方法 254 
14.2.4 参考资料 258 
14.3 尺度不变特征变换 258 
14.3.1 尺度空间变换 260 
14.3.2 关键点定位 266 
14.3.3 通过方向描述关键点 267 
14.3.4 显示关键点 271 
14.4 基于SIFT的指纹识别 273 
14.4.1 距离计算 273 
14.4.2 特征匹配 274 
14.4.3 算法及实现程序 277 
第3部分 机器学习篇 
第15章 机器学习导读 282 
15.1 机器学习是什么 283 
15.2 机器学习基础概念 284 
15.2.1 机器学习的类型 284 
15.2.2 泛化能力 289 
15.2.3 数据集的划分 290 
15.2.4 模型的拟合 291 
15.2.5 性能度量 292 
15.2.6 偏差与方差 293 
15.3 OpenCV中的机器学习模块 294 
15.3.1 人工神经网络 295 
15.3.2 决策树 296 
15.3.3 EM模块 300 
15.3.4 K近邻模块 300 
15.3.5 logistic回归 303 
15.3.6 贝叶斯分类器 305 
15.3.7 支持向量机 308 
15.3.8 随机梯度下降 SVM 分类器 310 
15.4 OpenCV机器学习模块的使用 312 
15.4.1 使用KNN模块分类 312 
15.4.2 使用SVM模块分类 314 
第16章 KNN实现字符识别 317 
16.1 手写数字识别 317 
16.2 英文字母识别 319 
第17章 求解数独图像 322 
17.1 基本过程 322 
17.2 定位数独图像内的单元格 323 
17.3 构造KNN模型 327 
17.4 识别数独图像内的数字 330 
17.5 求解数独 332 
17.6 绘制数独求解结果 334 
17.7 实现程序 335 
17.8 扩展学习 338 
第18章 SVM数字识别 339 
18.1 基本流程 339 
18.2 倾斜校正 340 
18.3 HOG特征提取 343 
18.4 数据处理 348 
18.5 构造及使用SVM分类器 351 
18.6 实现程序 352 
18.7 参考学习 354 
第19章 行人检测 355 
19.1 方向梯度直方图特征 355 
19.2 基础实现 358 
19.2.1 基本流程 359 
19.2.2 实现程序 359 
19.3 函数detectMultiScale参数及优化 360 
19.3.1 参数winStride 360 
19.3.2 参数padding 362 
19.3.3 参数scale 364 
19.3.4 参数useMeanshiftGrouping 366 
19.4 完整程序 369 
19.5 参考学习 370 
第20章 K均值聚类实现艺术画 371 
20.1 理论基础 371 
20.1.1 案例 371 
20.1.2 K均值聚类的基本步骤 373 
20.2 K均值聚类模块 374 
20.3 艺术画 377 
第4部分 深度学习篇 
第21章 深度学习导读 384 
21.1 从感知机到人工神经网络 384 
21.1.1 感知机 384 
21.1.2 激活函数 385 
21.1.3 人工神经网络 387 
21.1.4 完成分类 388 
21.2 人工神经网络如何学习 389 
21.3 深度学习是什么 390 
21.3.1 深度的含义 390 
21.3.2 表示学习 391 
21.3.3 端到端 392 
21.3.4 深度学习可视化 393 
21.4 激活函数的分类 394 
21.4.1 sigmoid函数 394 
21.4.2 tanh函数 395 
21.4.3 ReLU函数 395 
21.4.4 Leaky ReLU函数 396 
21.4.5 ELU函数 396 
21.5 损失函数 397 
21.5.1 为什么要用损失值 397 
21.5.2 损失值如何起作用 398 
21.5.3 均方误差 399 
21.5.4 交叉熵误差 400 
21.6 学习的技能与方法 401 
21.6.1 全连接 401 
21.6.2 随机失活 402 
21.6.3 One-hot编码 403 
21.6.4 学习率 403 
21.6.5 正则化 404 
21.6.6 mini-batch方法 405 
21.6.7 超参数 406 
21.7 深度学习游乐场 406 
第22章 卷积神经网络基础 407 
22.1 卷积基础 407 
22.2 卷积原理 409 
22.2.1 数值卷积 409 
22.2.2 图像卷积 410 
22.2.3 如何获取卷积核 411 
22.3 填充和步长 412 
22.4 池化操作 413 
22.5 感受野 414 
22.6 预处理与初始化 416 
22.6.1 扩充数据集 416 
22.6.2 标准化与归一化 417 
22.6.3 网络参数初始化 418 
22.7 CNN 418 
22.7.1 LeNet 418 
22.7.2 AlexNet 419 
22.7.3 VGG网络 420 
22.7.4 NiN 420 
22.7.5 GooLeNet 421 
22.7.6 残差网络 423 
第23章 DNN模块 426 
23.1 工作流程 427 
23.2 模型导入 428 
23.3 图像预处理 429 
23.4 推理相关函数 438 
第24章 深度学习应用实践 440 
24.1 图像分类 441 
24.1.1 图像分类模型 441 
24.1.2 实现程序 442 
24.2 目标检测 443 
24.2.1 YOLO 444 
24.2.2 SSD 447 
24.3 图像分割 450 
24.3.1 语义分割 450 
24.3.2 实例分割 453 
24.4 风格迁移 458 
24.5 姿势识别 460 
24.6 说明 463 
第5部分 人脸识别篇 
第25章 人脸检测 466 
25.1 基本原理 466 
25.2 级联分类器的使用 469 
25.3 函数介绍 470 
25.4 人脸检测实现 471 
25.5 表情检测 473 <



内容摘要
本书以OpenCV-Python(the Python API for OpenCV)为工具,以案例为载体,系统介绍了计算机视觉从入门到深度学习的相关知识点。本书从基础知识、基础案例、机器学习、深度学习和人脸识别5个方面对计算机视觉的相关知识点进行了全面、系统、深入的介绍。书介绍了40余个经典的计算机视觉案例,其中既有图像加密、指纹识别、车牌识别、缺陷检测等基于传统技术的计算机视觉经典案例,也有图像分类、目标检测、语义分割、实例分割、风格迁移、姿势识别等基于深度学习的计算机视觉案例,还有表情识别、驾驶员疲劳检测、易容术、性别和年龄识别等基于人脸识别的计算机视觉案例。在介绍具体的算法原理时,本书尽量使用通俗易懂的语言和贴近生活的示例来说明问题,避免使用复杂抽象的公式来介绍。本书适合计算机视觉领域的初学者阅读,也适合学生、教师、专业技术人员、图像处理爱好者阅读。

   相关推荐   

—  没有更多了  —

以下为对购买帮助不大的评价

此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP