作者简介 Joachim Hilgert (J.希尔格特)是靠前知名学者,在数学界享有盛誉。本书凝聚了作者多年科研和教学成果,适用于科研工作者、高校教师和研究生。
目录 Introduction 1.1Teaching Suggestions 1.2l.lndamental Notation Part Ⅰ Matrix Groups Concrete Matrix Groups 2.1The General Linear Group 2.2Groups and Geometry 2.3Quaternionic Matrix Groups 3The Matrix Exponential Function 3.1Smooth Functions Defined by Power Series 3.2Elementary Properties of the Exponential Function 3.3The Logarithm Function 3.4The Baker-Campbell-Dynkin-Hausdorff Formula 4Linear Lie Groups 4.1The Lie Algebra of a Linear Lie Group 4.2Calculating Lie Algebras of Linear Lie Groups 4.3Polar Decomposition of Certain Algebraic Lie Groups Part Ⅱ Lie Algebras 5Elementary Structure Theory of Lie Algebras 5.1Basic Concepts 5.2Nilpotent Lie Algebras 5.3The Jordan Decomposition 5.4Solvable Lie Algebras 5.5Semisimple Lie Algebras 5.6The Theorems of Levi and Malcev 5.7Reductive Lie Algebras 6Root Decomposition 6.1Cartan Subalgebras 6.2The Classification of Simple sl2(K)-Modules 6.3Root Decompositions of Semisimple Lie Algebras 6.4Abstract Root Systems and Their Weyl Groups 7Representation Theory of Lie Algebras 7.1The Universal Enveloping Algebra 7.2Generators and Relations for Semisimple Lie Algebras 7.3Highest Weight Representations 7.4Ados Theorem 7.5Lie Algebra Cohomology 7.6General Extensions of Lie Algebras Part Ⅲ Manifolds and Lie Groups 8Smooth Manifolds 8.1Smooth Maps in Several Variables 8.2Smooth Manifolds and Smooth Maps 8.3The Tangent Bundle 8.4Vector Fields 8.5Integral Curves and Local Flows 8.6Submanifolds 9 Basic Lie Theory 9.1Lie Groups and Their Lie Algebras 9.2The Exponential Function of a Lie Group 9.3Closed Subgroups of Lie Groups and Their Lie Algebras 9.4Constructing Lie Group Structures on Groups 9.5Covering Theory for Lie Groups 9.6Arcwise Connected Subgroups and Initial Subgroups 10 Smooth Actions of Lie Groups 10.1 Homogeneous Spaces 10.2 Frame Bundles 10.3 Integration on Manifolds 10.4 Invariant Integration 10.5 Integrating Lie Algebras of Vector Fields Part Ⅳ Structure Theory of Lie Groups 11Normal Subgroups, Nilpotent and Solvable Lie Groups 11.1 Normalizers, Normal Subgroups, and Semidirect Products 11.2 Commutators, Nilpotent and Solvable Lie Groups 11.3 The Automorphism Group of a Lie Group 12Compact Lie Groups 12.1 Lie Groups with Compact Lie Algebra 12.2 Maximal Tori in Compact Lie Groups 12.3 Linearity of Compact Lie Groups 12.4 Topological Properties 13Semlsimple Lie Groups 13.1 Cartan Decompositions 13.2 Compact Real Forms 13.3 The Iwasawa Decomposition 14General Structure Theory 14.1 Maximal Compact Subgroups 14.2 The Center of a Connected Lie Group 14.3 The Manifold Splitting Theorem 14.4 The Exponential Unction of Solvable Groups 14.5 Dense Integral Subgroups 14.6 Appendix: Finitely Generated Abelian Groups 15Complex Lie Groups 15.1 The Universal Complexification 15.2 Linearly Complex Reductive Lie Groups 15.3 Complex Abelian Lie Groups 15.4 The Automorphism Group of a Complex Lie Group 16Linearity of Lie Groups 16.1 Linearly Real Reductive Lie Groups 16.2 The Existence of Faithful Finite-Dimensional Representations 16.3 Linearity of Complex Lie Groups 17Classical Lie Groups 17.1 Compact Classical Groups 17.2 Noncompact Classical Groups 17.3 More Spin Groups 17.4 Conformal Groups 18Nonconnected Lie Groups 18.1 Extensions of Discrete Groups by Lie Groups 18.2 Coverings of Nonconnected Lie Groups 18.3 Appendix: Group Cohomology Part VAppendices ABasic Covering Theory A.1 The Fundamental Group A.2 Coverings BSome MultUinear Algebra B.1 Tensor Products and Tensor Algebra B.2 Symmetric and Exterior Products B.3 Clifford Algebras, Pin and Spin Groups CSome Functional Analysis C.1 Bounded Operators C.2 Hilbert Spaces C.3 Compact Symmetric Operators on Hilbert Spaces DHints to Exercises References Index
内容摘要 该书介绍了李群及其在流形上的作用,它受到广大数学家和学生的喜爱。 该书是在作者1991年写的教材Lie-Gruppen und Lie-Algebren 的基础上,介绍了李群的基本原理,书中增加了其过去近20年的教学和研究工作编著的,并且着重强调了微分几何在该领域中的作用。该书内容丰富, 书中大量的练习和选用的提示为学生提供了充分的学习指引。
以下为对购买帮助不大的评价