穆罕默德・法拉(MuhammadFaryad),印度物理学家,他是拉合尔管理科学大学物理系的助理教授。他在旁遮普大学获得了数学和物理学学士学位(2002年),在真纳大学获得了电子学硕士学位(2006年)和哲学硕士学位(2008年),2012年在宾夕法尼亚州立大学获得了工程科学与力学博士学位。他是《国际光与电子光学期刊(Optik)》(International Journal ofLight and Electron Optics(Optik))的高级策划编辑。目前他的研究兴趣包括复杂介质的电磁、表面电磁波、光子晶体和太阳能电池。
【目录】
Preface Acknowledgments Author biographies 1 Introduction 1.1 Concept of infinite-space dyadic Green functions 1.2 Examples of linear operators 1.2.1 RL circuit 1.2.2 Sound wave 1.2.3 Plate vibration 1.2.4 Helmholtz operator 1.3 Linear electromagnetism 1.3.1 Dyadic Green functions for field phasors 1.3.2 Dyadic Green functions for vector potential phasors 1.4 Solution approaches 1.4.1 Spatial-Fourier-transfor m approach 1.4.2 Direct approach 1.4.3 Eigenfunction-expansion approach 1.4.4 Scalarization approach 1.5 Organization of the monograph References 2 Isotropic and biisotropic mediums 2.1 Isotropic dielectric-magnetic medium 2.1.1 Dyadic Green functions 2.1.2 Radiation from a point-electric dipole 2.1.3 Radiation fro m a point-magnetic dipole 2.1.4 Radiation from an electrically small electric-current loop 2.2 Isotropic chiral medium 2.2.1 Dyadic Green functions 2.2.2 Radiation fro m a point-electric dipole 2.2.3 Radiation from a point-magnetic dipole 2.2.4 Radiation fro m an electrically s mall electric-current loop 2.3 Lorentz-nonreciprocal biisotropy References 3 Anisotropic and bianisotropic mediums 3.1 Symmetry and antisymmetry 3.2 Uniaxial mediums 3.3 Uniaxial dielectric medium 3.3.1 Dyadic Green functions 3.3.2 Radiation from a point-electric dipole 3.3.3 Radiation from a point-magnetic dipole 3.4 Uniaxial magnetic medium 3.5 Uniaxial dielectric-magnetic medium 3.5.1 Dyadic Green functions 3.5.2 Radiation from a point-electric dipole 3.5.3 Radiation from a point-magnetic dipole 3.6 Lorentz-reciprocal, axially uniaxial, bianisotropic medium 3.7 Lorentz-nonreciprocal, axially uniaxial, bianisotropic medium 3.8 Lorentz-reciprocal, anisotropic chiral, isotropic diclectric-magnctic medium 3.9 Anisotropic dielectric-magnetic medium with cross-handed gyrotropy 3.10 General self-dual bianisotropic medium 3.11 A special gyrotropic bianisotropic medium 3.12 General uniaxial bianisotropic medium 3.12.1 Non-gyrotropic medium 3.12.2 Gyrotropic medium 3.13 Transformable medium 3.13.1 Dyadic Green functions 3.13.2 Extensions 3.13.3 Pathologically unirefringent, uniaxial dielectric-magnetic Medium inspired by general relativity 3.13.4 Orthorhombic dielectric-magnetic mediu m with 3.13.5 gyrotropic magnetoelectric properties References 4 Bilinear expansions 4.1 Isotropic diclectric-magnetic medium 4.1.1 Cartesian coordinate system 4.1.2 Cvlindrical coordinate system 4.1.3 Spherical coordinate system 4.2 Isotropic chiral medium 4.2.1 Cartesian coordinate system 4.2.2 Cylindrical coordinate system 4.2.3 Spherical coordinate system 4.3 Orthorhombic dielectric-magnetic medium with gyrotropic magnetoelectric properties 4.3.1 Special case:a = a,= a References 5 Applications of dyadic Green functions 5.1 The Ewald-Oseen extinction theorem 5.1.1 Constitutive relations 5.1.2 Dyadic Green functions 5.1.3 Huygens principle 5.1.4 Ewald-Oseen extinction theorem 5.1.5 Surface integral equations for scattering 5.2 Fields in the source region 5.2.1 Depolarization dyadic 5.2.2 Depolarization dyadics for bianisotropic mediums 5.3 Volume integral equations for scattering 5.3.1 Formulation 5.3.2 Method of moments 5.3.3 Polarizability-density dyadics 5.3.4 Coupled-dipole method 5.4 Homogenization References Appendix A: Dyadics and dyads 编辑手记
以下为对购买帮助不大的评价