6-B2-3
¥ 39.53 6.7折 ¥ 59 全新
库存3件
作者[美]梅甘·斯夸尔 著;姚军 译
出版社机械工业出版社
出版时间2017-05
版次1
装帧平装
货号BL
上书时间2022-10-12
在本书中,你将深入许多数据挖掘中常被忽视的领域,包括关联规则挖掘、实体匹配、网络挖掘、情绪分析、命名实体识别、文本摘要、主题建模和异常检测。对于每种数据挖掘技术,我们将在比较解决每种问题所用的各种策略之前,研究目前新的佳实践。然后,将用来自软件工程领域的实际数据,实现示例解决方案,并学习理解和解读所得结果的方法。
译者序
关于审稿人
前言
第1章 扩展你的数据挖掘工具箱1
1.1 什么是数据挖掘2
1.2 如何进行数据挖掘4
1.2.1 Fayyad等人的KDD过程4
1.2.2 韩家炜等人的KDD过程4
1.2.3 CRISP-DM过程5
1.2.4 六步过程6
1.2.5 哪一种数据挖掘方法最好6
1.3 在数据挖掘中使用哪些技术7
1.4 如何建立数据挖掘工作环境9
1.5 小结14
第2章 关联规则挖掘16
2.1 什么是频繁项集16
2.1.1 都市传奇“尿布与啤酒”17
2.1.2 频繁项集挖掘基础知识18
2.2 迈向关联规则19
2.2.1 支持度20
2.2.2 置信度20
2.2.3 关联规则21
2.2.4 包含数据的示例21
2.2.5 附加值—修复计划中的漏洞22
2.2.6 寻找频繁项集的方法24
2.3 项目—发现软件项目标签中的关联规则25
2.4 小结38
第3章 实体匹配39
3.1 什么是实体匹配40
3.1.1 数据合并42
3.1.2 匹配技术45
3.1.3 基于属性的相似度匹配45
3.1.4 属性匹配方法46
3.1.5 利用不相交数据集48
3.1.6 基于上下文的相似度匹配48
3.1.7 基于机器学习的实体匹配49
3.1.8 实体匹配技术的评估50
3.2 实体匹配项目53
3.2.1 软件项目匹配的难度53
3.2.2 两个例子53
3.2.3 根据项目名称匹配55
3.2.4 根据人名匹配55
3.2.5 根据URL匹配55
3.2.6 按照主题和描述关键词匹配56
3.2.7 数据集57
3.2.8 代码58
3.2.9 结果63
3.3 小结66
第4章 网络分析68
4.1 什么是网络68
4.2 网络计量71
4.2.1 网络的度数71
4.2.2 网络直径72
4.2.3 网络中的通路、路径和迹72
4.2.4 网络的成分73
4.2.5 图的中心性73
4.3 图数据的表示76
4.3.1 邻接矩阵76
4.3.2 边表和邻接表77
4.3.3 图数据结构之间的差别77
4.3.4 将数据导入图结构中78
4.4 真实项目84
4.4.1 探索数据84
4.4.2 生成网络文件89
4.4.3 以网络的形式理解数据91
4.5 小结107
第5章 文本情绪分析109
5.1 什么是情绪分析110
5.2 情绪分析基础知识111
5.2.1 观点的结构111
5.2.2 文档级和句子级分析112
5.2.3 观点的重要特征113
5.3 情绪分析算法114
5.4 情绪挖掘应用116
5.4.1 项目动机117
5.4.2 数据准备117
5.4.3 聊天消息的数据分析120
5.4.4 电子邮件消息的数据分析124
5.5 小结130
第6章 文本中的命名实体识别131
6.1 为什么寻找命名实体?131
6.2 命名实体识别技术134
6.3 NER系统的构建与评估137
6.3.1 NER和部分匹配137
6.3.2 处理部分匹配138
6.4 命名实体识别项目140
6.5 小结149
第7章 自动化文本摘要150
7.1 什么是自动化文本摘要151
7.2 文本摘要工具151
7.2.1 使用NTLK的简单文本摘要152
7.2.2 使用Gensim的文本摘要155
7.2.3 使用Sumy的文本摘要157
7.3 小结163
第8章 文本中的主题建模164
8.1 什么是主题建模164
8.2 潜在狄利克雷分配166
8.3 Gensim主题建模167
8.3.1 理解Gensim LDA主题169
8.3.2 理解Gensim LDA的遍数170
8.3.3 对新文档应用Gensim LDA模型172
8.3.4 序列化Gensim LDA对象172
8.4 用于更大项目的Gensim LDA174
8.5 小结176
第9章 挖掘数据异常178
9.1 什么是数据异常178
9.1.1 缺失数据179
9.1.2 修复缺失数据181
9.1.3 数据错误184
9.1.4 离群值186
9.2 小结194
— 没有更多了 —
以下为对购买帮助不大的评价