• 高性能Python(影印版)
  • 高性能Python(影印版)
  • 高性能Python(影印版)
  • 高性能Python(影印版)
  • 高性能Python(影印版)
  • 高性能Python(影印版)
  • 高性能Python(影印版)
21年品牌 40万+商家 超1.5亿件商品

高性能Python(影印版)

扉页有字迹

10.1 1.3折 78 九品

仅1件

河北廊坊
认证卖家担保交易快速发货售后保障

作者Micha、Lan Ozsvald 著

出版社东南大学出版社

出版时间2015-02

版次1

装帧平装

货号763-16

上书时间2023-12-06

潮白书苑

五年老店
已实名 已认证 进店 收藏店铺

   商品详情   

品相描述:九品
图书标准信息
  • 作者 Micha、Lan Ozsvald 著
  • 出版社 东南大学出版社
  • 出版时间 2015-02
  • 版次 1
  • ISBN 9787564153854
  • 定价 78.00元
  • 装帧 平装
  • 开本 16开
  • 纸张 胶版纸
  • 页数 351页
  • 字数 455千字
  • 正文语种 简体中文
  • 原版书名 High Performance Python
【内容简介】
  你的Python代码也许运行正确,但是你需要运行得更快速。通过探讨隐藏在设计备选方案中的基础理论,《高性能Python(影印版)》将帮助你更深入地理解Python的实现。你将了解如何定位性能瓶颈,从而显著提升高数据流量程序中的代码执行效率。
  你该如何利用多核架构和集群?或者你该如何搭建一个可以自由伸缩而不会影响可靠性的系统?有经验的Python程序员将会学习到这类问题的具体解决方案,以及来自于各个公司的如何把高性能Python用于社交媒体分析、产品机器学习和其他场景中去的曲折故事。
【作者简介】
作者:(美国)戈雷利克(Micha Gorelick) (英国)欧日沃尔德(Ian Ozsvald) …
【目录】
Preface
1.UnderstandingPerformantPython
TheFundamentalComputerSystem
ComputingUnits
MemoryUnits
CommunicationsLayers
PuttingtheFundamentalElementsTogether
IdealizedComputingVersusthePythonVirtualMachine
SoWhyUsePython?
2.ProfilingtoFindBottlenecks
ProfilingEfficiently
IntroducingtheJuliaSet
CalculatingtheFullJuliaSet
SimpleApproachestoTiming——printandaDecorator
SimpleTimingUsingtheUnixtimeCommand

3.ListsandTuples
AMoreEfficientSearch
ListsVersusTuples
ListsasDynamicArrays
TuplesAsStaticArrays
Wrap-Up

4.DictionariesandSets
HowDoDictionariesandSetsWork?
InsertingandRetrieving
Deletion
Resizing
HashFunctionsandEntropy
DictionariesandNamespaces
Wrap-Up

5.IteratorsandGenerators
IteratorsforInfiniteSeries
LazyGeneratorEvaluation
Wrap-Up

6.MatrixandVectorComputation
IntroductiontotheProblem
Aren'tPythonListsGoodEnough?
ProblemswithAllocatingTooMuch
MemoryFragmentation
Understandingperf
MakingDecisionswithperf'sOutput
Enternumpy
ApplyingnumpytotheDiffusionProblem
MemoryAllocationsandIn-PlaceOperations
SelectiveOptimizations:FindingWhatNeedstoBeFixed
numexpr:MakingIn-PlaceOperationsFasterandEasier
ACautionaryTale:Verify“Optimizations”(scipy)
Wrap-Up

7.CompilingtoC
WhatSortofSpeedGainsArePossible?
JITVersusAOTCompilers
WhyDoesTypeInformationHelptheCodeRunFaster?
UsingaCCompiler
ReviewingtheJuliaSetExample
Cvthon
CompilingaPure-PythonVersionUsingCython
CythonAnnotationstoAnalyzeaBlockofCode
AddingSomeTypeAnnotations
ShedSkin
BuildinganExtensionModule
TheCostoftheMemoryCopies
Cythonandnumpy
ParaUelizingtheSolutionwithOpenMPonOneMachine
Numba
Pythran
PyPy
GarbageCollectionDifferences
RunningPyPyandInstallingModules
WhentoUseEachTechnology
OtherUpcomingProjects
ANoteonGraphicsProcessingUnits(GPUs)
AWishforaFutureCompilerProject
ForeignFunctionInterfaces
ctypes
cffi
f2py
CPythonModule
Wrap-Up

8.Concurrency
IntroductiontoAsynchronousProgramming
SerialCrawler
gevent
tornado
AsyncIO
DatabaseExample
Wrap-Up

9.lhemultiprocessingModule
AnOverviewoftheMultiprocessingModule
EstimatingPiUsingtheMonteCarloMethod
EstimatingPiUsingProcessesandThreads
UsingPythonObjects
RandomNumbersinParallelSystems
Usingnumpy
FindingPrimeNumbers
QueuesofWork
VerifyingPrimesUsingInterprocessCommunication
SerialSolution
NaivePoolSolution
ALessNaivePoolSolution
UsingManager.ValueasaFlag
UsingRedisasaFlag
UsingRawValueasaFlag
UsingmmapasaFlag
UsingmmapasaFlagRedux
SharingnumpyDatawithmultiprocessing
SynchronizingFileandVariableAccess
FileLocking
LockingaValue
Wrap-Up

10.ClustersandJobQueues
BenefitsofClustering
DrawbacksofClustering
$462MillionWallStreetLossThroughPoorClusterUpgradeStrategy
Skype's24-HourGlobalOutage
CommonClusterDesigns
HowtoStartaClusteredSolution
WaystoAvoidPainWhenUsingClusters
ThreeClusteringSolutions
UsingtheParallelPythonModuleforSimpleLocalClusters
UsingIPythonParalleltoSupportResearch
NSQforRobustProductionClustering
Queues
Pub/sub
DistributedPrimeCalculation
OtherClusteringToolstoLookAt
Wrap-Up

11.UsingLessRAM
ObjectsforPrimitivesAreExpensive
TheArrayModuleStoresManyPrimitiveObjectsCheaply
UnderstandingtheRAMUsedinaCollection
BytesVersusUnicode
EfficientlyStoringLotsofTextinRAM
TryingTheseApproacheson8MillionTokens
TipsforUsingLessRAM
ProbabilisticDataStructures
VeryApproximateCountingwitha1-byteMorrisCounter
K-MinimumValues
BloomFilters
LogLogCounter
Real-WorldExample

12.LessonsfromtheField
AdaptiveLab'sSocialMediaAnalytics(SOMA)
PythonatAdaptiveLab
SoMA'sDesign
OurDevelopmentMethodology
MaintainingSoMA
AdviceforFellowEngineers
MakingDeepLearningFlywithRadimRehurek.com
TheSweetSpot
LessonsinOptimizing
Wrap-Up
Large-ScaleProductionizedMachineLearningatLyst.com
PythonsPlaceatLyst
ClusterDesign
CodeEvolutioninaFast-MovingStart-Up
BuildingtheRecommendationEngine
ReportingandMonitoring
SomeAdvice
Large-ScaleSocialMediaAnalysisatSmesh
PythonsRoleatSmesh
ThePlatform
HighPerformanceReal-TimeStringMatching
Reporting,Monitoring,Debugging,andDeployment
PyPyforSuccessfulWebandDataProcessingSystems
Prerequisites
TheDatabase
TheWebApplication
OCRandTranslation
TaskDistributionandWorkers
Conclusion
TaskQueuesatLanyrd.com
Python'sRoleatLanyrd
MakingtheTaskQueuePerformant
Reporting,Monitoring,Debugging,andDeployment
AdvicetoaFellowDeveloper
Index
点击展开 点击收起

   相关推荐   

—  没有更多了  —

以下为对购买帮助不大的评价

此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP