高性能Python(影印版)
扉页有字迹
¥
10.1
1.3折
¥
78
九品
仅1件
作者Micha、Lan Ozsvald 著
出版社东南大学出版社
出版时间2015-02
版次1
装帧平装
货号763-16
上书时间2023-12-06
商品详情
- 品相描述:九品
图书标准信息
-
作者
Micha、Lan Ozsvald 著
-
出版社
东南大学出版社
-
出版时间
2015-02
-
版次
1
-
ISBN
9787564153854
-
定价
78.00元
-
装帧
平装
-
开本
16开
-
纸张
胶版纸
-
页数
351页
-
字数
455千字
-
正文语种
简体中文
-
原版书名
High Performance Python
- 【内容简介】
-
你的Python代码也许运行正确,但是你需要运行得更快速。通过探讨隐藏在设计备选方案中的基础理论,《高性能Python(影印版)》将帮助你更深入地理解Python的实现。你将了解如何定位性能瓶颈,从而显著提升高数据流量程序中的代码执行效率。
你该如何利用多核架构和集群?或者你该如何搭建一个可以自由伸缩而不会影响可靠性的系统?有经验的Python程序员将会学习到这类问题的具体解决方案,以及来自于各个公司的如何把高性能Python用于社交媒体分析、产品机器学习和其他场景中去的曲折故事。
- 【作者简介】
-
作者:(美国)戈雷利克(Micha Gorelick) (英国)欧日沃尔德(Ian Ozsvald) …
- 【目录】
-
Preface
1.UnderstandingPerformantPython
TheFundamentalComputerSystem
ComputingUnits
MemoryUnits
CommunicationsLayers
PuttingtheFundamentalElementsTogether
IdealizedComputingVersusthePythonVirtualMachine
SoWhyUsePython?
2.ProfilingtoFindBottlenecks
ProfilingEfficiently
IntroducingtheJuliaSet
CalculatingtheFullJuliaSet
SimpleApproachestoTiming——printandaDecorator
SimpleTimingUsingtheUnixtimeCommand
3.ListsandTuples
AMoreEfficientSearch
ListsVersusTuples
ListsasDynamicArrays
TuplesAsStaticArrays
Wrap-Up
4.DictionariesandSets
HowDoDictionariesandSetsWork?
InsertingandRetrieving
Deletion
Resizing
HashFunctionsandEntropy
DictionariesandNamespaces
Wrap-Up
5.IteratorsandGenerators
IteratorsforInfiniteSeries
LazyGeneratorEvaluation
Wrap-Up
6.MatrixandVectorComputation
IntroductiontotheProblem
Aren'tPythonListsGoodEnough?
ProblemswithAllocatingTooMuch
MemoryFragmentation
Understandingperf
MakingDecisionswithperf'sOutput
Enternumpy
ApplyingnumpytotheDiffusionProblem
MemoryAllocationsandIn-PlaceOperations
SelectiveOptimizations:FindingWhatNeedstoBeFixed
numexpr:MakingIn-PlaceOperationsFasterandEasier
ACautionaryTale:Verify“Optimizations”(scipy)
Wrap-Up
7.CompilingtoC
WhatSortofSpeedGainsArePossible?
JITVersusAOTCompilers
WhyDoesTypeInformationHelptheCodeRunFaster?
UsingaCCompiler
ReviewingtheJuliaSetExample
Cvthon
CompilingaPure-PythonVersionUsingCython
CythonAnnotationstoAnalyzeaBlockofCode
AddingSomeTypeAnnotations
ShedSkin
BuildinganExtensionModule
TheCostoftheMemoryCopies
Cythonandnumpy
ParaUelizingtheSolutionwithOpenMPonOneMachine
Numba
Pythran
PyPy
GarbageCollectionDifferences
RunningPyPyandInstallingModules
WhentoUseEachTechnology
OtherUpcomingProjects
ANoteonGraphicsProcessingUnits(GPUs)
AWishforaFutureCompilerProject
ForeignFunctionInterfaces
ctypes
cffi
f2py
CPythonModule
Wrap-Up
8.Concurrency
IntroductiontoAsynchronousProgramming
SerialCrawler
gevent
tornado
AsyncIO
DatabaseExample
Wrap-Up
9.lhemultiprocessingModule
AnOverviewoftheMultiprocessingModule
EstimatingPiUsingtheMonteCarloMethod
EstimatingPiUsingProcessesandThreads
UsingPythonObjects
RandomNumbersinParallelSystems
Usingnumpy
FindingPrimeNumbers
QueuesofWork
VerifyingPrimesUsingInterprocessCommunication
SerialSolution
NaivePoolSolution
ALessNaivePoolSolution
UsingManager.ValueasaFlag
UsingRedisasaFlag
UsingRawValueasaFlag
UsingmmapasaFlag
UsingmmapasaFlagRedux
SharingnumpyDatawithmultiprocessing
SynchronizingFileandVariableAccess
FileLocking
LockingaValue
Wrap-Up
10.ClustersandJobQueues
BenefitsofClustering
DrawbacksofClustering
$462MillionWallStreetLossThroughPoorClusterUpgradeStrategy
Skype's24-HourGlobalOutage
CommonClusterDesigns
HowtoStartaClusteredSolution
WaystoAvoidPainWhenUsingClusters
ThreeClusteringSolutions
UsingtheParallelPythonModuleforSimpleLocalClusters
UsingIPythonParalleltoSupportResearch
NSQforRobustProductionClustering
Queues
Pub/sub
DistributedPrimeCalculation
OtherClusteringToolstoLookAt
Wrap-Up
11.UsingLessRAM
ObjectsforPrimitivesAreExpensive
TheArrayModuleStoresManyPrimitiveObjectsCheaply
UnderstandingtheRAMUsedinaCollection
BytesVersusUnicode
EfficientlyStoringLotsofTextinRAM
TryingTheseApproacheson8MillionTokens
TipsforUsingLessRAM
ProbabilisticDataStructures
VeryApproximateCountingwitha1-byteMorrisCounter
K-MinimumValues
BloomFilters
LogLogCounter
Real-WorldExample
12.LessonsfromtheField
AdaptiveLab'sSocialMediaAnalytics(SOMA)
PythonatAdaptiveLab
SoMA'sDesign
OurDevelopmentMethodology
MaintainingSoMA
AdviceforFellowEngineers
MakingDeepLearningFlywithRadimRehurek.com
TheSweetSpot
LessonsinOptimizing
Wrap-Up
Large-ScaleProductionizedMachineLearningatLyst.com
PythonsPlaceatLyst
ClusterDesign
CodeEvolutioninaFast-MovingStart-Up
BuildingtheRecommendationEngine
ReportingandMonitoring
SomeAdvice
Large-ScaleSocialMediaAnalysisatSmesh
PythonsRoleatSmesh
ThePlatform
HighPerformanceReal-TimeStringMatching
Reporting,Monitoring,Debugging,andDeployment
PyPyforSuccessfulWebandDataProcessingSystems
Prerequisites
TheDatabase
TheWebApplication
OCRandTranslation
TaskDistributionandWorkers
Conclusion
TaskQueuesatLanyrd.com
Python'sRoleatLanyrd
MakingtheTaskQueuePerformant
Reporting,Monitoring,Debugging,andDeployment
AdvicetoaFellowDeveloper
Index
点击展开
点击收起
— 没有更多了 —
以下为对购买帮助不大的评价