二手书,此书是一本无赠品和附件,非套装,购买套装请联系客服
¥ 5.24 1.1折 ¥ 49.8 八五品
库存62件
作者林子雨、赖永炫、陶继平 著
出版社人民邮电出版社
出版时间2018-07
版次1
装帧平装
货号9787115475985
上书时间2024-09-18
本书以Scala作为开发Spark应用程序的编程语言,系统介绍了Spark编程的基础知识。全书共7章,内容包括大数据技术概述、Spark的设计与运行原理、Spark环境搭建和使用方法、RDD编程、Spark SQL、Spark Streaming、Spark MLlib等。
第1章 大数据技术概述 1
1.1 大数据的概念与关键技术 2
1.1.1 大数据的概念 2
1.1.2 大数据关键技术 2
1.2 代表性大数据技术 4
1.2.1 Hadoop 4
1.2.2 Spark 8
1.2.3 Flink 10
1.2.4 Beam 11
1.3 编程语言的选择 12
1.4 在线资源 13
1.5 本章小结 14
1.6 习题 14
实验1 Linux系统的安装和常用命令 15
一、实验目的 15
二、实验平台 15
三、实验内容和要求 15
四、实验报告 16
第2章 Spark的设计与运行原理 17
2.1 概述 18
2.2 Spark生态系统 19
2.3 Spark运行架构 20
2.3.1 基本概念 20
2.3.2 架构设计 21
2.3.3 Spark运行基本流程 22
2.3.4 RDD的设计与运行原理 23
2.4 Spark的部署方式 32
2.5 本章小结 33
2.6 习题 34
第3章 Spark环境搭建和使用方法 35
3.1 安装Spark 36
3.1.1 基础环境 36
3.1.2 下载安装文件 36
3.1.3 配置相关文件 37
3.1.4 Spark和Hadoop的交互 38
3.2 在spark-shell中运行代码 38
3.2.1 spark-shell命令 39
3.2.2 启动spark-shell 40
3.3 开发Spark独立应用程序 40
3.3.1 安装编译打包工具 41
3.3.2 编写Spark应用程序代码 42
3.3.3 编译打包 42
3.3.4 通过spark-submit运行程序 45
3.4 Spark集群环境搭建 45
3.4.1 集群概况 46
3.4.2 搭建Hadoop集群 46
3.4.3 在集群中安装Spark 47
3.4.4 配置环境变量 47
3.4.5 Spark的配置 47
3.4.6 启动Spark集群 48
3.4.7 关闭Spark集群 48
3.5 在集群上运行Spark应用程序 49
3.5.1 启动Spark集群 49
3.5.2 采用独立集群管理器 49
3.5.3 采用Hadoop YARN管理器 50
3.6 本章小结 51
3.7 习题 52
实验2 Spark和Hadoop的安装 52
一、实验目的 52
二、实验平台 52
三、实验内容和要求 52
四、实验报告 53
第4章 RDD编程 54
4.1 RDD编程基础 55
4.1.1 RDD创建 55
4.1.2 RDD操作 56
4.1.3 持久化 62
4.1.4 分区 63
4.1.5 一个综合实例 67
4.2 键值对RDD 69
4.2.1 键值对RDD的创建 69
4.2.2 常用的键值对转换操作 70
4.2.3 一个综合实例 74
4.3 数据读写 75
4.3.1 文件数据读写 76
4.3.2 读写HBase数据 78
4.4 综合实例 82
4.4.1 求TOP值 82
4.4.2 文件排序 84
4.4.3 二次排序 85
4.5 本章小结 87
实验3 RDD编程初级实践 87
一、实验目的 87
二、实验平台 87
三、实验内容和要求 87
四、实验报告 89
第5章 Spark SQL 90
5.1 Spark SQL简介 91
5.1.1 从Shark说起 91
5.1.2 Spark SQL架构 92
5.1.3 为什么推出Spark SQL 93
5.2 DataFrame概述 93
5.3 DataFrame的创建 94
5.4 DataFrame的保存 95
5.5 DataFrame的常用操作 96
5.6 从RDD转换得到DataFrame 97
5.6.1 利用反射机制推断RDD模式 98
5.6.2 使用编程方式定义RDD模式 99
5.7 使用Spark SQL读写数据库 101
5.7.1 通过JDBC连接数据库 101
5.7.2 连接Hive读写数据 103
5.8 本章小结 107
5.9 习题 107
实验4 Spark SQL编程初级实践 108
一、实验目的 108
二、实验平台 108
三、实验内容和要求 108
四、实验报告 109
第6章 Spark Streaming 110
6.1 流计算概述 111
6.1.1 静态数据和流数据 111
6.1.2 批量计算和实时计算 112
6.1.3 流计算概念 112
6.1.4 流计算框架 113
6.1.5 流计算处理流程 114
6.2 Spark Streaming 115
6.2.1 Spark Streaming设计 115
6.2.2 Spark Streaming与Storm的对比 116
6.2.3 从“Hadoop+Storm”架构转向Spark架构 117
6.3 DStream操作概述 118
6.3.1 Spark Streaming工作机制 118
6.3.2 编写Spark Streaming程序的基本步骤 119
6.3.3 创建StreamingContext对象 119
6.4 基本输入源 120
6.4.1 文件流 120
6.4.2 套接字流 122
6.4.3 RDD队列流 127
6.5 高级数据源 128
6.5.1 Kafka简介 129
6.5.2 Kafka准备工作 129
6.5.3 Spark准备工作 130
6.5.4 编写Spark Streaming程序使用Kafka数据源 131
6.6 转换操作 135
6.6.1 DStream无状态转换操作 135
6.6.2 DStream有状态转换操作 136
6.7 输出操作 140
6.7.1 把DStream输出到文本文件中 140
6.7.2 把DStream写入到关系数据库中 141
6.8 本章小结 143
6.9 习题 143
实验5 Spark Streaming编程初级实践 144
一、实验目的 144
二、实验平台 144
三、实验内容和要求 144
四、实验报告 145
第7章 Spark Mllib 146
7.1 基于大数据的机器学习 147
7.2 机器学习库MLlib概述 148
7.3 基本数据类型 149
7.3.1 本地向量 149
7.3.2 标注点 149
7.3.3 本地矩阵 150
7.4 机器学习流水线 151
7.4.1 流水线的概念 151
7.4.2 流水线工作过程 152
7.5 特征提取、转换和选择 153
7.5.1 特征提取 154
7.5.2 特征转换 156
7.5.3 特征选择 161
7.5.4 局部敏感哈希 162
7.6 分类算法 163
7.6.1 逻辑斯蒂回归分类器 163
7.6.2 决策树分类器 167
7.7 聚类算法 170
7.7.1 K-Means聚类算法 171
7.7.2 GMM聚类算法 173
7.8 协同过滤算法 175
7.8.1 推荐算法的原理 176
7.8.2 ALS算法 176
7.9 模型选择和超参数调整 180
7.9.1 模型选择工具 180
7.9.2 用交叉验证选择模型 181
7.10 本章小结 183
7.11 习题 183
实验6 Spark机器学习库MLlib编程实践 184
一、实验目的 184
二、实验平台 184
三、实验内容和要求 184
四、实验报告 185
参考文献 186
— 没有更多了 —
以下为对购买帮助不大的评价