PaddlePaddle深度学习实战
二手书,此书是一本,购买套装请联系客服
¥
10.25
1.5折
¥
69
八五品
仅1件
作者刘祥龙 杨晴虹 谭中意 蒋晓琳
出版社机械工业出版社
出版时间2018-06
版次1
装帧其他
货号9787111600466
上书时间2024-08-20
商品详情
- 品相描述:八五品
图书标准信息
-
作者
刘祥龙 杨晴虹 谭中意 蒋晓琳
-
出版社
机械工业出版社
-
出版时间
2018-06
-
版次
1
-
ISBN
9787111600466
-
定价
69.00元
-
装帧
其他
-
开本
16开
-
纸张
胶版纸
-
页数
245页
-
字数
195千字
- 【内容简介】
-
本书采用由简入繁的原则撰写而成。我们希望本书能成为一名能带领读者领略PaddlePaddle精妙的精神导游。从较为简单的线性回归、逻辑回归到较为复杂的RNN数字识别、个性化推荐、云上部署等,本书结合若干实例,系统地介绍了PaddlePaddle的使用特点。教会读者如何使用框架就像教会了读者一套外功拳法。然而本书不仅关注框架本身的细节用法,还非常注重基础知识和理论,目的是教会读者内功心法。书中既详细描述了神经网络的各个细节,也深入讲解了算法性能优化的思路和技巧,旨在帮助读者深入理解深度学习的精髓。本书共分为10章,每一章都包含理论介绍和对应的代码实现。
- 【作者简介】
-
刘祥龙
北航计算机学院、软件开发环境国家重点实验室副教授。主要研究视觉计算、深度学习、群体智能等,在国际上较系统地研究了多模式哈希和互补多哈希表检索方法。近年来,参与“核高基”国家重大专项、国家自然科学基金重大专项等多个国家课题。发表CVPR、ICCV、AAAI、IJCAI、IEEE TIP等人工智能、计算机视觉领域国际顶级/知名会议和期刊论文40余篇。担任SCI期刊FCS青年副主编,人工智能/多媒体顶级会议ACM MM、AAAI和PCM等多个知名国际会议的程序委员会委员,以及IEEE TIP、TNNLS、TMM等十余个国际知名期刊和会议审稿人。
杨晴虹
北航副教授,高级工程师。北航博士,美国南康涅狄格州立大学图书信息科学访问学者,美国耶鲁大学技术创新实验室数据分析专家。发表国际论文几十篇,主要研究领域有机器学习、知识挖掘、大数据分析、项目管理和科研管理等。在机器学习、深度学习、神经网络等领域有丰富的实践经验,曾主导和参与多个相关的项目并取得成功。
谭中意
百度研发工程师,负责百度开源的整体推进工作,有近20年的开发和运营经验。在百度多个部门工作过,现负责以平台化/开源的方式提升百度内部整体的研发效率,并包括组织开源技术委员会,对百度对外的开源进行整体的推动工作。中国开源推进联盟(COPU)副秘书长。
蒋晓琳
百度公司技术管理部高级工程师,之前任职于中国信息通信研究院。曾参与主导超过30余项国家/行业标准,以及多项国际标准。在人工智能、云计算、大数据等领域参与申报和管理的国家重大专项达10余个。
白浩杰
北航特聘讲师,美国佛罗里达国际大学高性能数据实验室访问学者,致力于移动对象数据库、数据可视化、机器学习、深度学习等方向的研究。径点科技有限公司高级工程师,尚硅谷IT教育前端教学总监。
- 【目录】
-
CONTENTS
目 录
序
前言
致谢
第1章 数学基础与Python库 1
1.1 Python是进行人工智能编程的
主要语言 1
1.2 数学基础 4
1.2.1 线性代数基础 4
1.2.2 微积分基础 8
1.3 Python库的操作 17
1.3.1 numpy操作 17
1.3.2 matplotlib操作 23
本章小结 27
第2章 深度学习概论与PaddlePaddle入门 28
2.1 人工智能、机器学习与深度学习 29
2.1.1 人工智能 30
2.1.2 机器学习 30
2.1.3 深度学习 31
2.2 深度学习的发展历程 32
2.2.1 神经网络的第一次高潮 32
2.2.2 神经网络的第一次寒冬 33
2.2.3 神经网络的第二次高潮 34
2.2.4 神经网络的第二次寒冬 35
2.2.5 深度学习的来临 35
2.2.6 深度学习崛起的时代背景 36
2.3 深度学习的应用场景 36
2.3.1 图像与视觉 37
2.3.2 语音识别 37
2.3.3 自然语言处理 38
2.3.4 个性化推荐 38
2.4 常见的深度学习网络结构 39
2.4.1 全连接网络结构 39
2.4.2 卷积神经网络 40
2.4.3 循环神经网络 41
2.5 机器学习回顾 41
2.5.1 线性回归的基本概念 42
2.5.2 数据处理 44
2.5.3 模型概览 45
2.5.4 效果展示 46
2.6 深度学习框架简介 47
2.6.1 深度学习框架的作用 47
2.6.2 常见的深度学习框架 48
2.6.3 PaddlePaddle简介 49
2.6.4 PaddlePaddle使用 49
2.7 PaddlePaddle实现 51
本章小结 60
第3章 深度学习的单层网络 61
3.1 Logistic回归模型 62
3.1.1 Logistic回归概述 62
3.1.2 损失函数 64
3.1.3 Logistic回归的梯度下降 66
3.2 实现Logistic回归模型 71
3.2.1 Python版本 72
3.2.2 PaddlePaddle版本 81
本章小结 90
第4章 浅层神经网络 92
4.1 神经网络 92
4.1.1 神经网络的定义及其结构 92
4.1.2 神经网络的计算 94
4.2 BP算法 100
4.2.1 逻辑回归与BP算法 101
4.2.2 单样本双层神经网络的BP算法 101
4.2.3 多个样本神经网络BP算法 105
4.3 BP算法实践 108
4.3.1 Python版本 109
4.3.2 PaddlePaddle版本 116
本章小结 122
第5章 深层神经网络 123
5.1 深层网络介绍 123
5.1.1 深度影响算法能力 124
5.1.2 网络演化过程与常用符号 125
5.2 传播过程 127
5.2.1 神经网络算法核心思想 127
5.2.2 深层网络前向传播过程 128
5.2.3 深层网络后向传播过程 129
5.2.4 传播过程总结 130
5.3 网络的参数 132
5.4 代码实现 133
5.4.1 Python版本 133
5.4.2 PaddlePaddle版本 136
本章小结 140
第6章 卷积神经网络 141
6.1 图像分类问题描述 141
6.2 卷积神经网络介绍 142
6.2.1 卷积层 142
6.2.2 ReLU激活函数 147
6.2.3 池化层 148
6.2.4 Softmax分类层 149
6.2.5 主要特点 151
6.2.6 经典神经网络架构 152
6.3 PaddlePaddle实现 159
6.3.1 数据介绍 159
6.3.2 模型概览 160
6.3.3 配置说明 160
6.3.4 应用模型 168
本章小结 169
第7章 个性化推荐 170
7.1 问题描述 170
7.2 传统推荐方法 171
7.2.1 基于内容的推荐 172
7.2.2 协同过滤推荐 173
7.2.3 混合推荐 175
7.3 深度学习推荐方法 176
7.3.1 YouTube的深度神经网络推荐系统 176
7.3.2 融合推荐系统 178
7.4 个性化推荐系统在PaddlePaddle上的实现 180
7.4.1 数据准备 180
7.4.2 模型配置 182
7.4.3 模型训练 184
7.4.4 模型测试 188
本章小结 188
第8章 个性化推荐的分布式实现 190
8.1 PaddlePaddle Cloud介绍 190
8.2 PaddlePaddle Cloud使用 192
8.2.1 创建集群 192
8.2.2 配置集群 192
8.2.3 配置客户端 193
8.3 个性化推荐在PaddlePaddle Cloud上的实现 194
8.3.1 提交单节点任务 194
8.3.2 个性化推荐在PaddlePaddle Cloud上的实现 196
本章小结 199
第9章 广告CTR预估 200
9.1 CTR预估简介 200
9.1.1 CTR定义 201
9.1.2 CTR与推荐算法的异同 202
9.1.3 CTR预估的评价指标 202
9.2 CTR预估的基本过程 205
9.2.1 CTR预估的三个阶段 206
9.2.2 CTR预估中的特征预处理 206
9.3 CTR预估的常见模型 208
9.3.1 LR模型 208
9.3.2 GBDT模型 210
9.3.3 GBDT+LR模型 212
9.3.4 FM+DNN模型 214
9.3.5 MLR模型 215
9.4 CTR预估在工业上的实现 217
9.5 CTR预估在PaddlePaddle上的实现 218
9.5.1 数据集 218
9.5.2 预测模型选择和构建 219
9.5.3 PaddlePaddle完整实现 222
本章小结 226
第10章 算法优化 227
10.1 基础知识 227
10.1.1 训练、验证和测试集 227
10.1.2 偏差和方差 228
10.2 评估 229
10.2.1 选定评估目标 229
10.2.2 迭代过程 230
10.2.3 欠拟合和过拟合 230
10.3 调优策略 231
10.3.1 降低偏差 231
10.3.2 降低方差 236
10.4 超参数调优 242
10.4.1 随机搜索和网格搜索 242
10.4.2 超参数范围 243
10.4.3 分阶段搜索 243
10.4.4 例子:对学习率的调整 244
本章小结 245
点击展开
点击收起
— 没有更多了 —
以下为对购买帮助不大的评价