• 短文本数据理解
21年品牌 40万+商家 超1.5亿件商品

短文本数据理解

全新正版现货

51.7 7.5折 69 全新

仅1件

四川成都
认证卖家担保交易快速发货售后保障

作者王仲远

出版社机械工业出版社

ISBN9787111558811

出版时间2017-05

装帧平装

开本16开

纸张胶版纸

定价69元

货号25084034

上书时间2024-07-19

乐淘正品书城

五年老店
已实名 已认证 进店 收藏店铺

   商品详情   

品相描述:全新
正版全新
商品描述

编辑推荐】:

内容简介】:
短文本理解是伴随着搜索引擎、社交网络,以及聊天机器人等应用场景而兴起的一个研究课题。它是近年来的一个研究热点,且对未来人工智能的发展有重要的影响。本书所介绍的短文本数据理解技术,涵盖学术界及工业界前沿的理论及方法,可以广泛应用于搜索引擎、广告系统、智能助手等场景中,是大数据管理不可或缺的部分,具有较高的实际应用价值。

作者简介】:
中国人民大学博士,微软亚洲研究院研究员。负责微软研究院大型Web知识库系统Probase项目,以及企业知识库系统Enterprise Dictionary项目。已在VLDB、ICDE、IJCAI、CIKM等国际*学术会议上发表论文十余篇,并获得ICDE 2015佳论文奖。出版技术专著2本,拥有美国专利5项。研究领域包括:人工智能、知识库系统、自然语言处理、机器学习、数据挖掘等。

目录】:
目录‖

从书前言
推荐序一
推荐序二
前言
第1章短文本理解及其应用
11短文本理解
12短文本理解研究现状
121短文本理解模型概述
122短文本理解模型粒度分析
13短文本理解框架
第2章基于概率的属性提取与推导
21引言
22属性提取
221属性提取的整体框架
222概率isA网络
223基于概念和基于实体的属性提取
23属性得分推导
231典型度得分
232根据CB列表计算典型度
233根据IB列表计算典型度
234典型度聚合
235同义属性集合
24相关研究
25小结
第3章单实体概念化模型
31引言
311基本层次类别
312应用
313BLC计算方法
32语义网络
33基本层次类别化
331典型性
332将典型性用于BLC
333将平滑典型性用于BLC
334将PMI用于BLC
335将Rep(e,c)用于BLC
34小结
第4章基于概念化的短文本理解
41引言
42预备知识
421概念
422概念聚类
423属性
424整体框架和符号表示
43挖掘词汇关系
431概述
432解析
433P(z|t)推导
434P(c|t,z)推导
435语义网络
44查询理解
441方法概况
442算法
45小结
第5章基于概念化的短文本主题词与修饰词检测
51引言
52整体框架
53非限定性修饰词挖掘
54限定性修饰词挖掘
541Probase:一个大规模的isA知识库
542实体别主题词修饰词
543概念别主题词修饰词
55主题词与修饰词检测
551解析
552针对两个组件的主题词修饰词检测
553针对两个以上组件的主题词修饰词检测
56相关工作
57小结
第6章基于概念化的词相似度计算
61引言
62语义网络和同义词集合
63基本方法
631类型判别
632语境表示
633语境相似度
634讨论
64改进方法
641概念聚类
642MaxMax相似度计算方法
643聚类删减优化
65相关工作
66小结
第7章基于概念化的海量竞价关键字匹配
71引言
72语义网络
73系统框架
74概念化
741实体检测
742词义推导
743消除歧义
75检索
751基于点击数据的候选竞价关键字选择
752基于概念的候选竞价关键字选择
753排名
76相关工作
77小结
第8章短文本理解研究展望
81知识语义网
82显性知识和隐性知识的结合
参考文献

   相关推荐   

—  没有更多了  —

以下为对购买帮助不大的评价

正版全新
此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP