定价:95.00元 《李群》是一部研究生一年级学习李群和李代数的教程,作者采取了与许多教材以紧李群的表示论作为理论基础不同的安排,并精心挑选一系列材料,给读者提供更广阔的视野。本书是第二版,在D一版的基础上增加了不少新内容,包括更进一步讨论基本原理、使得一些证明更加流畅,囊括了一些第一版没有涉及的结果和话题。 编辑推荐 《李群(第2版)(英文版)》由世界图书出版公司北京公司出版。 作者简介 Daniel Bump 斯坦福大学数学系教授。他的研究领域包括自守形、表示论及数论。他还是玩“Go游戏”的电脑程序GNU Go的合编者之一。他所著的重要书籍包括《自守形》,《表示论》。 目录 Preface Part Ⅰ Compact Groups 1 Haar Measure 2 Schur Orthogonality 3 Compact Operators 4 The Peter—Weyl Theorem Part Ⅱ Compact Lie Groups 5 Lie Subgroups of GL(n, C) 7 Left—Invariant Vector Fields 8 The Exponential Map 9 Tensors and Universal Properties 10 The Universal Enveloping Algebra 11 Extension of Scalars 12 Representations of □(2,C) 13 The Universal Cover 14 The Local Frobenius Theorem 16 Geodesics and Maximal Tori 17 The Weyllntegration Formula 18 The Root System 19 Examples of Root Systems 20 Abstract Weyl Groups 21 Highest Weight Vectors 22 The Weyl Character Formula 23 The Fundamental Group Part Ⅲ Noncompact Lie Groups 24 Complexification 25 Coxeter Groups 26 The Borel Subgroup 27 The Bruhat Decomposition 28 Symmetric Spaces 29 Relative Root Systems 30 Embeddings of Lie Groups Part ⅣDuality and Other Topics 33 Characters of GL(n.,C) 34 Duality Between Sk and GL(n,C) 35 The Jacobi—Trudi Identity 36 Schur Polynomials and GL(n, C) 37 Schur Polynomials and Sk 40 Symmetric Group Branching Rules and Tableaux 41 Unitary Branching Rules and Tableaux 42 Minors of Toeplitz Matrices 43 The Involution Model for Sk 47 The Philosophy of Cusp Forms 48 Cohomology of Grassmannians '
以下为对购买帮助不大的评价